
Tracking Large Class Projects in Real-Time Using Fine-Grained
Source Control

Gustavo Rodriguez-Rivera
grr@cs.purdue.edu
Purdue University

West Lafayette, IN, USA

Jeff Turkstra
turkstra@cs.purdue.edu

Purdue University
West Lafayette, IN, USA

Jordan Buckmaster
buckmast@purdue.edu
Purdue University

West Lafayette, IN, USA

Killian LeClainche
kleclain@purdue.edu
Purdue University

West Lafayette, IN, USA

Shawn Montgomery
montgo38@purdue.edu

Purdue University
West Lafayette, IN, USA

William Reed
reed226@purdue.edu
Purdue University

West Lafayette, IN, USA

Ryan Sullivan
sulli196@purdue.edu
Purdue University

West Lafayette, IN, USA

Jarett Lee
lee2363@purdue.edu
Purdue University

West Lafayette, IN, USA

ABSTRACT
Managing a class and identifying common problems becomes sig-
nificantly more challenging as class sizes increase. Additionally, the
increase of online learning requires better methods to track student
progress remotely. In this paper, we describe a system that tracks
student progress in real time. We propose a method for obtaining a
fine-grained commit history by creating a Git repository for each
student and automatically running commit/push commands every
time a student compiles code. This approach makes a rich source
of trace data that can track student progress in real-time, identify
common problems students are having, alert faculty of students
that are falling behind, and verify project authorship. However,
analyzing individual repositories in a large class of students can be
tedious and complex, so we have developed a system that provides
quick access to all student repositories and summary information
and statistics for their projects. This paper describes our approach
for obtaining fine-grained source control commits in real-time, a
method for tracking student and overall class progress using this
data, and our experiences using this system.

CCS CONCEPTS
• Social and professional topics → Student assessment.

KEYWORDS
assessment, classroom management, source control

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE 2022, March 3–5, 2022, Providence, RI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9070-5/22/03. . . $15.00
https://doi.org/10.1145/3478431.3499389

ACM Reference Format:
Gustavo Rodriguez-Rivera, Jeff Turkstra, Jordan Buckmaster, Killian LeClainche,
Shawn Montgomery, William Reed, Ryan Sullivan, and Jarett Lee. 2022.
Tracking Large Class Projects in Real-Time Using Fine-Grained Source
Control. In Proceedings of the 53rd ACM Technical Symposium on Computer
Science Education V. 1 (SIGCSE 2022), March 3–5, 2022, Providence, RI, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3478431.3499389

1 INTRODUCTION
One of the biggest challenges of managing a large class is that small
problems are exacerbated by the number of students in the class.
For instance, challenging deadlines may cause students to submit
incomplete work, or fail to submit anything at all. However, these
same outcomes may be due to severe student procrastination. These
problems are far more challenging to diagnose in large classes, and
may result in massive frustration and anxiety for everyone.

In most projects, the only data instructors receive occurs after
the project has been turned in and graded, when it is too late to
apply any corrective measures. Instead of waiting until the project
is turned in, it would be beneficial to monitor and detect problems
in real-time while the project is being developed. If students find
the project difficult to complete, it is important to recognize that as
soon as possible so that instructors can organize extra help, extend
the deadline, or simplify the project. If a student is falling behind
due to procrastination, discovering this fact well before the project
is due would allow instructors to intervene, perhaps by sending the
student a reminder, or offering additional help.

We have called our system EnCourse. EnCourse keeps track of
projects in real-time by using source control, specifically Git. In
our system we create a Git repository for each student on a central
server. The students clone this repository into their home directo-
ries. The initial sources include a Makefile, or project file, with the
commands needed to build the executable of the program.

Normally a programmer uses Git to manually commit and push
changes for a group of files after a task has been completed and
tested. This task-based commit history is useful for development
teams, but does not produce commits often enough to track the

Session: Learning Analytics SIGCSE ’22, March 3–5, 2022, Providence RI, USA

565

https://doi.org/10.1145/3478431.3499389
https://doi.org/10.1145/3478431.3499389
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3478431.3499389&domain=pdf&date_stamp=2022-02-22

small changes that studentsmake as part of their development/debug
cycle.

Figure 1: Student local and central repositories with En-
Course. EnCourse gets information from the student reposi-
tories in real-time, and can be accessed from a browser.

In our system, the Makefile or Project file that compiles the
project contains Git commit and push commands to automatically
commit changes into the student repository. Using this system,
changes are tracked every time the project is compiled. When a
student modifies a source file as a part of the program-build-test-
debug cycle, the Makefile commits and pushes the recent changes
into source control. This creates a fine-grained sequence of commits
that tell the story of how the program was developed.

The students repositories are accessed through the EnCourse
web application. The application periodically retrieves a summary
of all student repositories to provide the instructor with an analysis
of both the class’s progress as a whole and that of individual stu-
dents. EnCourse also provides real-time access to each individual
student repository as shown in Figure 1.

2 RELATEDWORK
There are currently free and commercial class management systems
that simplify the submission and grading of programming assign-
ments. Systems such as OK, Web-CAT, Autolab, and Coursemology,
have been used with success in large classes [4, 5, 8]. These auto-
graders are used to submit programs, grade projects, and provide
feedback to the students. However, it is not possible to know the
status of a student’s project until the project is submitted. There
are also commercial class management systems such as Vocareum,
Codepost, Codio, and Gradescope, that are being successfully used
in large classes, and are popular among small and large universities.
These systems are primarily for submitting, grading, and giving
feedback to students[2, 3, 7, 15]. Vocareum allows you to submit
and view code, engage in automated grading, obtain basic grade
analytics, and engage in in-browser development of programs. It
lacks any fine grained information regarding student work progress.
Codepost and Codio allow annotation and grading of student code.
They also provide management mechanisms for teams of graders.
There is no mechanism for gaining insight into realtime student
progress. Gradescope is primarily geared toward written works.
It provides detailed statistics after grading is complete. It is also

submission based and lacks any mechanism for tracking progress.
The MOSS (Measure of Software Similarity) system [14] is one of
the top plagiarism detection systems out there, and it is widely used.
However, it is also not real-time, providing information only after
submission of completed work.

Source Control systems have been used previously to coordinate
development of class material and projects or as part of grading
[1, 9, 10, 12, 13]. The Pensieve system described in [16] is mainly
designed to give instructors feedback on the student’s learning
process after the project has been submitted. It does provide the
instructor with a history of how the project was developed. It also
uses Git with fine-grained source control commits. However, the
Git repositories used by the students are local to each student’s
directory and are unknown to the instructor until the project is
submitted. It is only after submission that the instructor can see
how the student developed the project.

A popular tool that provides source control in the cloud for
education is GitHub Classroom [6]. This site allows repositories
for an entire class and provides tools for commits, submission, and
monitoring. This system makes it easy to distribute and submit
homework and projects and shows statistics such as the frequency
of commits per student. However, since the students have to commit
their changes manually, it does not provide the fine granularity in
the submissions necessary to provide feedback in real-time.

The EnCourse system, in contrast, provides real-time informa-
tion of the student project by not only committing, but also pushing
the commits to the student’s central repository. This allows the
instructor to remotely monitor progress in real-time, before the
project is submitted. EnCourse is also able to send alerts to students
who are falling behind, measure class progress, and give student
feedback even before the project is submitted. EnCourse provides a
real-time analysis of both the class as a whole and each individual
student.

3 TRACKING STUDENT PROGRESS WITH
FINE-GRAINED COMMITS IN REAL-TIME

When creating a project, we make a git repository for every student
in a central server, using a remote file system with File Access
Control Lists or FACL [11]. The permissions of each repository
allow Read and Write operations for the individual student and the
instructors. The repositories can be initialized with skeleton files
if desired. Then, each student must clone their repository, so the
student can commit/push their changes. EnCourse detects these
changes and updates its statistics and history. The git commands are
added directly to the Makefile that the student uses to compile the
project. In this way, we can obtain a complete history that mainly
contains commits focused on a single change. This can be achieved
by adding a git target to theMakefile which uses shell commands for
git to add relevant files to staging, commit the changes to the local
repository, and then push the changes to the remote repository.

Since compilation and testing time can be large in general, En-
Course does not compile or test projects that are being monitored.
Instead, instructors using EnCourse provide students with a test
suite that allows them to determine a partial project grade. As part
of the build process, this test suite is run and its output is captured

Session: Learning Analytics SIGCSE ’22, March 3–5, 2022, Providence RI, USA

566

Figure 2: Estimation of time spent on a project by a Student
(solid line) and the class average (dotted line) displayed by
EnCourse.

and stored in the repository. EnCourse then uses this information
to determine the student’s progress.

Given the previously described environment, students should be
instructed to follow a good workflow in order to get fine grained
commits that can nicely show their progress. We also remind stu-
dents that they will be subject to extra scrutiny if their commit
history does not support the expected effort. Weekly grading check-
points also encourage students to work diligently on their assign-
ment. Students should also be encouraged to build often and test
whenever they think they should be passing another test case, so
that way both commit history and progress over time have good
granularity.

4 ENCOURSE FEATURES
Analyzing individual repositories in a large class of students can be
tedious and difficult. EnCourse provides quick access to all student
repositories as well as summary information and statistics for their
projects. EnCourse is able to:

• Estimate the time spent by students on a project.
• Detect possible instances of academic dishonesty.
• Send alerts to students when they are falling behind in the
project.

• Provide data to learn about how students program and debug.
• Access individual student repositories and see changes.
• Sort students by time spent, number of commits, tests passed,
and progress.

EnCourse estimates the amount of time that each student spends
on a project using fixed-size time intervals (E.g. 20 minutes). An
interval starts only after the previous interval has ended and a new
commit has been made. Multiple commits that happen within a
time interval are ignored. Only until the time interval expires and
another commit occurs will another time interval begin as shown
in Figure 2.

EnCourse also evaluates student projects to catch instances of
academic dishonesty. There are three main metrics used to evaluate
this. First, the rate of progress relative to the elapsed time is used
to estimate how long a student spent thinking about a problem.
Second, the rate of progress relative to the number of commits is
used to detect cases of copying bulk amounts of code from another

source. Third, the ratio of added vs. deleted lines helps estimate
the frequency of mistakes that a student makes while working on
their project. Fewer mistakes often indicate a higher likelihood
of academic dishonesty. By combining these metrics with a mea-
sure of code similarity, and configurable weights, we generate a
score which represents an estimated, relative likelihood of academic
dishonesty between students.

EnCourse is capable of sending alerts to instructors and teaching
assistants when students are falling behind using progress metrics
retrieved from Git. Additionally, EnCourse can reveal the portions
of the project on which students spend the majority of their time
by determining the time spent on each task. It can also be used as
a research tool to learn how students program by examining the
combined Git information and calculated metrics.

Figure 3: Summary of Student Repositories in EnCourse that
can be sorted by number of hours spent in project, commits,
name etc.

EnCourse has tools to provide a summary view of projects for
the entire class as well as drill down to individual student statistics
as shown in Figure 3. This is different from tools like GitK or Gitweb
that allows browsing source code from only one repository at a
time. EnCourse allows sorting the students projects by time spent,
progress made, or number of commits. This helps identify both
students who are falling behind on the project as well as students
doing exceptionally well.

EnCourse also shows the number of commits over time (Figure
4). We would expect that a good student will have several commits
spread throughout the project. No commits at the beginning of
the project may be a sign of procrastination. Figure 5 shows the
progress of the student as measured by the tests passed over time.
We expect that the tests passed will be monotonically increasing. A
large number of commits with little progress may show that the
student is spending excessive time on a single test.

Another useful chart is the cumulative number of lines added
and removed over time as shown in Figure 6 and Figure 7. A line
change in Git is represented as removing an old line and adding
a new one. We expect that a student will have both added and re-
moved lines during the project development, giving approximately
a symmetric triangular shape. In this figure, additions are repre-
sented in green, and lines removed are represented in red. A chart
that has mostly lines added (green) and few or no lines removed
(red) would potentially indicate a case of academic dishonesty.

Session: Learning Analytics SIGCSE ’22, March 3–5, 2022, Providence RI, USA

567

Figure 4: Commit Frequency per day of a student.

Figure 5: Progress of a student through time estimated using
the test suite.

5 EXPERIENCE
We have used EnCourse in our Systems Programming course for
five semesters: Fall 2018, Spring 2019, Spring 2020, Fall 2020, and
Spring 2021 containing 228, 301, 311, 117, and 342 students re-
spectively. EnCourse has proven to be a valuable resource for us,
especially during the beginning of a project, by helping identify
those students who are already falling behind, often due to procras-
tination. Knowing the amount of time that a student has spent on
the project helps us reach out to students and offer assistance if
needed.

When we initially used EnCourse in Fall 2018, in the first project,
we detected that only one-third of the class had started after the first
week, even though the students told us during the lecture that the
project was going fine. So we sent an e-mail to the procrastinating
students asking them to start immediately and seek help if needed.

In the middle of a project we use EnCourse to measure the class
progress as a whole and to identify the parts of the project that
students find the most difficult to implement. If a significant number
of students are not close to finishing the project, we offer extra help
hours. This has allowed us to extend deadlines for projects that
turned out to be more difficult than anticipated. Such decisions can
be backed up by data obtained from EnCourse.

In Spring of 2020, when lectures had to go online due to Covid-
19, we had to reduce the scope of the final project. There was
little time left, and the rate of progress in the final project was not

the same as we expected in a regular face-to-face classroom. The
statistics in EnCourse about student progress helped us make this
determination.

We have also been able to identify cases of academic dishonesty
by detecting when a repository shows large pieces of code added
in one single commit or when a large number of tests pass after a
very short period of time. This detection can be done remotely and
without the student’s knowledge. In these cases, we have asked
the lab instructor to use other tools such as MOSS, interviews,
and implementation quizzes to gather more information. Academic
dishonesty is a very sensitive matter. When it occurs, the more data
an instructor has, the less difficult it is to make a decision.

For example, Figure 6 shows the cumulative graph of lines of
code added and deleted over time for an average student. During a
regular development cycle, the student adds new lines as well as
modifies existing ones to fix bugs. A line modification is registered
in Git as one line deleted and one added. We expect that the portion
of lines added (green) will be comparable to the number of lines
deleted. (red).

Figure 6: Cumulative graph of lines added and deleted over
time of one student.

The graph in Figure 7 shows a potential case of academic dis-
honesty. This graph illustrates that the number of lines added is
much larger than the lines deleted, implying large pieces of code
were added at once without modification.

Figure 7: Cumulative graph of lines added and deleted over
time of a potential academic dishonesty.

Session: Learning Analytics SIGCSE ’22, March 3–5, 2022, Providence RI, USA

568

More evidence accumulates when one looks at the history of
commits over time in Figure 8. This graph shows that the student
worked only a few days and only built the project a few times.
A commit in our system is equivalent to a write-build-test-debug
cycle. For a project that has 500 lines of code, only 30 development
cycles is highly suspicious.

Figure 8: Commit Frequency of a possible case of academic
dishonesty.

There have been false positives when some extremely good
students are able to finish programming projects in short periods of
time and few commits. In these cases, the lab instructor can verify
through the implementation quiz that the student was the author
of the project. An implementation quiz asks the student to show
in the code where certain features are implemented and to explain
how the code works. These are questions that the student should
know if he/she is the author of the project. EnCourse gives valuable
information in real-time about student progress. However, it is still
up to the instructor to interpret the data and take action when
necessary.

6 FUTUREWORK
We are working on making EnCourse easier to install and set up
so others can use it. Since hosting a git server for source con-
trol may be a challenge for some institutions, we would like to
allow GitHub classroom for hosting and have EnCourse communi-
cate with GitHub Classroom. Since a commit/push operation into
GitHub Classroom at every build cycle may take a long time, we
would like to execute these operations in parallel while the student
is working on the project.

In addition, we would like to improve the accuracy and utility
of metrics to measure student progress. Finally, Since EnCourse
provides a fine-grain record of how the student approaches pro-
gramming, we see great potential in using EnCourse as a tool for
Computer Science education research.

We are also exploring the possibility of integrating IDEs such
as Visual Studio Code, Jupiter, PyCharm, or IntelliJ into EnCourse.
EnCourse is an open source project and can be downloaded from
https://www.cs.purdue.edu/homes/grr/Encourse. We invite you to
use it, and we welcome your suggestions.

7 CONCLUSION
EnCourse is a new tool that proves to be very useful for instructors
in computer science. It provides valuable insights both at the overall
class level and for individual students. EnCourse can also help keep
teaching assistants up to date on how students in their lab section
are progressing. They can use this information when deciding how
to organize lab presentations and which students to focus on during
lab sections. EnCourse can be a valuable tool to track the progress
of projects in large classes.

8 ACKNOWLEDGEMENTS
We thank the reviewers for the invaluable feedback and suggestions
that improved this paper. We also thank the teaching assistants for
their input while using EnCourse. Finally, we also thank the instruc-
tors of the senior project course at our institution that facilitated
this project.

REFERENCES
[1] Curtis Clifton, Lisa C. Kaczmarczyk, and Michael Mrozek. 2007. Subverting the

Fundamentals Sequence: Using Version Control to Enhance Course Management.
In Proceedings of the 38th SIGCSE Technical Symposium on Computer Science
Education (Covington, Kentucky, USA) (SIGCSE ’07). Association for Computing
Machinery, New York, NY, USA, 86–90. https://doi.org/10.1145/1227310.1227344

[2] Codepost. 2021. Codepost. Retrieved August 1, 2021 from https://codepost.io
[3] Codio. 2021. Codio. Retrieved August 1, 2021 from https://codio.com
[4] John DeNero, Sumukh Sridhara, Manuel Pérez-Quiñones, Aatish Nayak, and Ben

Leong. 2017. Beyond Autograding: Advances in Student Feedback Platforms. In
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education (2017), 651–652. https://doi.org/10.1145/3017680.3017686

[5] Stephen H. Edwards and Manuel A. Perez-Quinones. 2008. Web-CAT: Auto-
matically Grading Programming Assignments. In Proceedings of the 13th Annual
Conference on Innovation and Technology in Computer Science Education (Madrid,
Spain) (ITiCSE ’08). Association for Computing Machinery, New York, NY, USA,
328. https://doi.org/10.1145/1384271.1384371

[6] GitHub. 2021. GitHub Classroom. Retrieved August 1, 2021 from https://classroom.
github.com

[7] Gradescope. 2021. Gradescope. Retrieved August 1, 2021 from https://www.
gradescope.com

[8] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. 2010. Review
of Recent Systems for Automatic Assessment of Programming Assignments.
In Proceedings of the 10th Koli Calling International Conference on Computing
Education Research (Koli, Finland) (Koli Calling ’10). Association for Computing
Machinery, New York, NY, USA, 86–93. https://doi.org/10.1145/1930464.1930480

[9] Oren Laadan, Jason Nieh, and Nicolas Viennot. 2010. Teaching Operating Systems
Using Virtual Appliances and Distributed Version Control. In Proceedings of
the 41st ACM Technical Symposium on Computer Science Education (Milwaukee,
Wisconsin, USA) (SIGCSE ’10). Association for Computing Machinery, New York,
NY, USA, 480–484. https://doi.org/10.1145/1734263.1734427

[10] Joseph Lawrance, Seikyung Jung, and Charles Wiseman. 2013. Git on the Cloud
in the Classroom. In Proceeding of the 44th ACM Technical Symposium on Com-
puter Science Education (Denver, Colorado, USA) (SIGCSE ’13). Association for
Computing Machinery, New York, NY, USA, 639–644. https://doi.org/10.1145/
2445196.2445386

[11] RedHat. 2021. File Access control Lists in Linux. Retrieved August 1, 2021 from
https://www.redhat.com/sysadmin/linux-access-control-lists

[12] Karen L. Reid and Gregory V. Wilson. 2005. Learning by Doing: Introducing
Version Control as a Way to Manage Student Assignments. SIGCSE Bull. 37, 1
(Feb. 2005), 272–276. https://doi.org/10.1145/1047124.1047441

[13] Karen L. Reid and Gregory V. Wilson. 2005. Learning by Doing: Introducing
Version Control as a Way to Manage Student Assignments. In Proceedings of
the 36th SIGCSE Technical Symposium on Computer Science Education (St. Louis,
Missouri, USA) (SIGCSE ’05). Association for Computing Machinery, New York,
NY, USA, 272–276. https://doi.org/10.1145/1047344.1047441

[14] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. 2003. Winnowing: Local
Algorithms for Document Fingerprinting. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data (San Diego, California) (SIGMOD
’03). Association for Computing Machinery, New York, NY, USA, 76–85. https:
//doi.org/10.1145/872757.872770

[15] Vocareum. 2021. Vocareum. Retrieved August 1, 2021 from https://www.
vocareum.com/

Session: Learning Analytics SIGCSE ’22, March 3–5, 2022, Providence RI, USA

569

https://doi.org/10.1145/1227310.1227344
https://codepost.io
https://codio.com
https://doi.org/10.1145/3017680.3017686
https://doi.org/10.1145/1384271.1384371
https://classroom.github.com
https://classroom.github.com
https://www.gradescope.com
https://www.gradescope.com
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1145/1734263.1734427
https://doi.org/10.1145/2445196.2445386
https://doi.org/10.1145/2445196.2445386
https://www.redhat.com/sysadmin/linux-access-control-lists
https://doi.org/10.1145/1047124.1047441
https://doi.org/10.1145/1047344.1047441
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/872757.872770
https://www.vocareum.com/
https://www.vocareum.com/

[16] Lisa Yan, Annie Hu, and Chris Piech. 2019. Pensieve: Feedback on Coding Process
for Novices. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education, SIGCSE 2019, Minneapolis, MN, USA, February 27 - March 02,

2019, Elizabeth K. Hawthorne, Manuel A. Pérez-Quiñones, Sarah Heckman, and
Jian Zhang (Eds.). ACM, 253–259. https://doi.org/10.1145/3287324.3287483

Session: Learning Analytics SIGCSE ’22, March 3–5, 2022, Providence RI, USA

570

https://doi.org/10.1145/3287324.3287483

	Abstract
	1 Introduction
	2 Related Work
	3 Tracking Student Progress With Fine-Grained Commits in Real-Time
	4 EnCourse Features
	5 Experience
	6 Future Work
	7 Conclusion
	8 Acknowledgements
	References

