

ECE 477 Final Report
Spring 2004

Team Code Name: ___Team _DiPFI____________________________ Team ID: __12__

Team Members (#1 is Team Leader):

#1: __Jeff Turkstra______________ Signature: ____________________ Date: _________

#2: __Bill Kreider_______________ Signature: ____________________ Date: _________

#3: __Egomaron Jegede__________ Signature: ____________________ Date: _________

#4: __Phillip Boone______________ Signature: ____________________ Date: _________

ECE 477 Final Report Spring 2004

REPORT EVALUATION

Component/Criterion Score Multiplier Points

Abstract 0 1 2 3 4 5 6 7 8 9 10 X 1

Project Overview and Block Diagram 0 1 2 3 4 5 6 7 8 9 10 X 2

Team Success Criteria/Fulfillment 0 1 2 3 4 5 6 7 8 9 10 X 2

Constraint Analysis/Component Selection 0 1 2 3 4 5 6 7 8 9 10 X 2

Patent Liability Analysis 0 1 2 3 4 5 6 7 8 9 10 X 2

Reliability and Safety Analysis 0 1 2 3 4 5 6 7 8 9 10 X 2

Ethical/Environmental Impact Analysis 0 1 2 3 4 5 6 7 8 9 10 X 2

Packaging Design Considerations 0 1 2 3 4 5 6 7 8 9 10 X 2

Schematic Design Considerations 0 1 2 3 4 5 6 7 8 9 10 X 2

PCB Layout Design Considerations 0 1 2 3 4 5 6 7 8 9 10 X 2

Software Design Considerations 0 1 2 3 4 5 6 7 8 9 10 X 2

Version 2 Changes 0 1 2 3 4 5 6 7 8 9 10 X 1

Summary and Conclusions 0 1 2 3 4 5 6 7 8 9 10 X 1

References 0 1 2 3 4 5 6 7 8 9 10 X 2

Appendix A: Individual Contributions 0 1 2 3 4 5 6 7 8 9 10 X 4

Appendix B: Packaging 0 1 2 3 4 5 6 7 8 9 10 X 2

Appendix C: Schematic 0 1 2 3 4 5 6 7 8 9 10 X 2

Appendix D: Top & Bottom Copper 0 1 2 3 4 5 6 7 8 9 10 X 2

Appendix E: Parts List Spreadsheet 0 1 2 3 4 5 6 7 8 9 10 X 2

Appendix F: Software Listing 0 1 2 3 4 5 6 7 8 9 10 X 2

Appendix G: User Manual 0 1 2 3 4 5 6 7 8 9 10 X 2

Appendix H: FMECA Worksheet 0 1 2 3 4 5 6 7 8 9 10 X 2

Technical Writing Style 0 1 2 3 4 5 6 7 8 9 10 X 5

CD-R of Website Image 0 1 2 3 4 5 6 7 8 9 10 X 2

 TOTAL

Comments:

 -ii-

ECE 477 Final Report Spring 2004

TABLE OF CONTENTS

Abstract 1
 1.0 Project Overview and Block Diagram 1
 2.0 Team Success Criteria and Fulfillment 3
 3.0 Constraint Analysis and Component Selection 4
 4.0 Patent Liability Analysis 6
 5.0 Reliability and Safety Analysis 10
 6.0 Ethical and Environmental Impact Analysis 16
 7.0 Packaging Design Considerations 19
 8.0 Schematic Design Considerations 22
 9.0 PCB Layout Design Considerations 24
10.0 Software Design Considerations 26
11.0 Version 2 Changes 33
12.0 Summary and Conclusions 34
13.0 References 35
Appendix A: Individual Contributions A-1
Appendix B: Packaging B-1
Appendix C: Schematic C-1
Appendix D: PCB Layout Top and Bottom Copper D-1
Appendix E: Parts List Spreadsheet E-1
Appendix F: Software Listing F-1
Appendix G: User Manual G-1
Appendix H: FMECA Worksheet H-1

 -iii-

ECE 477 Final Report Spring 2004

Abstract

The goal of this senior design project is the implementation of a digital picture frame

interface (DiPFI). The central idea is the ability to interface between a PC acting as a network

server and any VGA controlled display device effectively converting it into a digital picture

frame. Challenging aspects of this project included implementing software for both the PC and

the embedded micro-controller, addressing and sending data to the graphics controller and

correctly interfacing between the various components.

On-device pushbuttons, status LEDs and a remote control were incorporated into the

design, adding extra functionality and providing and intuitive means for the user to control the

display. The DiPFI was successfully realized and pixel by pixel has written its way into digi-jock

immortality.

1.0 Project Overview and Block Diagram

1.1 Project Overview
A Digital Picture Frame Interface, DiPFI, has been designed that will act as a buffer

between a personal computer storing digital photographs and a VGA compatible display. JPEG

images are decoded to raw .ppm files and then transferred to a Rabbit 3010 Core Module’s[1] RJ-

45 port. Once the data is received, the 21-bit memory address is sequentially latched into two

Atmel 22V10 PLDs[2] operating at 3.3V. The PLDs’ sole purpose is in Rabbit pin conservation,

as only sixteen total pins are needed for both the 21-bit address bus and the 16-bit data bus.

These PLDs latch the address so that the same Rabbit pins can be used to bus the data values to

an Epson graphics controller[3]. The Epson has been equipped with a 4 MB EDO DRAM

memory chip[4] that it uses to make the image data available for its onboard digital-to-analog

converter. The Epson also controls the RGB outputs being sent to any VGA compatible display

device. The system operates using a standard unregulated 9 VDC wall wart. The box also

communicates with a standard Sony IR remote control, as well as onboard pushbuttons and

status LEDs that enable the user to communicate with the device. The device is also driven

using a 25.175 MHz external clock[5]. Power is generated by Low-Dropout Voltage

Regulators[6]. The IR receiving is handled by a Sharp IR receiver[7] and data is decoded by a

Reynolds Electronics Sony IR decoder[8].

 1

ECE 477 Final Report Spring 2004

1.2 Block Diagram

Rabbit
Microprocessor

Network PC
Power
Supply

9V

EPSON
Graphics

Controller

PLD’s
(Data and Address

Multiplexing)

SONY IR
Receiver

& Decoder

Reset
Controller

Ethernet

Data Bus

DRAM

VGA Output

Digital 3.3V
Analog 3.3V
Digital 5V

Switches/LEDs

DATA [0:15]

ADDR [0:20]

Figure 1-1. DiPFI Block Diagram.

1.3 Photograph of Completed Project

Figure 1-2. Completed Project.

 2

ECE 477 Final Report Spring 2004

2.0 Team Success Criteria and Fulfillment

2.1 Project-Specific Success Criteria

• Ability to interface to a VGA controller and display graphical data on a VGA device

• Ability to receive and interpret IR signals from a remote

• Ability to receive decoded image data via Ethernet

• Ability to interface with pushbuttons and status LEDs

• Ability to generate text overlay on VGA device

2.2 Evaluation of Fulfillment

• This criterion was the most challenging to fulfill and was working very well. There were,

however, mapping issues because the Epson expected a 2 MB DRAM chip but saw a 4

MB chip. As such, the very top of the image was found at the bottom of the display

screen.

• The criterion was working as expected. The IR signals were interpreted as expected and

the picture displayed could be changed given the desired button press. There is little

noticeable interference.

• JPEG images are decoded to .ppm files and then transferred via a TCP/IP client to the

Rabbit. This decoded data is then forwarded to the graphics controller for processing,

resulting in correct image display and complete fulfillment of the criterion.

• The onboard pushbuttons perform the same functions as the corresponding IR buttons

and are interpreted as expected. The LEDs flash when busy and indicate when the device

is receiving power, as expected.

• This criterion has yet to be fulfilled. Generating text-overlay on the Rabbit itself seems

unnecessary and a software solution has yet to be created.

 3

ECE 477 Final Report Spring 2004

3.0 Constraint Analysis and Component Selection

3.1 Design Constraints
 The two major constraints of the project are the micro-controller and the graphics

processor.

The micro-controller must have a large amount of I/O pins if it is going to be interfaced

with a graphics controller chip due to the size of the address bus and data bus of modern VGA

graphics controllers. The micro-controller ideally should integrate as many features our design

requires as possible. It should include a network adapter, extra I/O pins to interface to the

graphics chip as well as the RF remote chip, have enough computational power to perform JPEG

decoding, and finally an efficient development environment. The controller should have enough

resources available to buffer the information coming from the Ethernet adapter and the data

going to the graphics controller.

The graphics chip needs to have all of the necessary hardware to display an image on the

VGA port. It will be responsible for creating the analog signals necessary to constantly refresh

the image to the screen. It should have a frame buffer large enough to store a high-resolution

image, so that once the image is sent to the controller it will be able to hold the image on the

screen. If the frame buffer is external to the chip, it must have a dedicated interface to the

graphics controller using readily available standard DRAM memory.

 Finally, the picture box should also try and meet other design constraints. The Digital

Picture Box is made to reside on a desk as a stand-alone device. Therefore it should be as

aesthetically pleasing as possible. Portability is not a key issue, but the smaller and more

lightweight the device is the better. The components should not cost more than an absolute

maximum of a couple hundred dollars to be marketable.

• Large nuMBer of general I/O pins to interface with a graphics controller
• Integrated network adapter
• Efficient development environment
• Large amounts of processing power to decode JPEG and buffer video data

Table 3-1. Summary of Micro-controller Requirements.

• Ability to create all necessary analog RGB signals for a standard VGA adapter and refresh

the image automatically
• Integrated frame buffer that is large enough to hold a SVGA image
• Standard EDO DRAM data bus for interfacing external memory chips

Table 3-2. Summary of Graphics Controller Requirements.

 4

ECE 477 Final Report Spring 2004

3.2 Rationale for Component Selection
 The final decision for the graphics controller was narrowed down to the Epson S1D13505

“Embedded RAMDAC LCD/CRT Controller” and the Cirrus Logic CL-PS7500FE[9] “System-

on-a-Chip with CRT/LCD Controller.” Both chips have analog RGB outputs for a standard

VGA CRT monitor, support for an external frame buffer using standard EDO DRAM chips, and

a standard input bus for data transfer. The Cirrus Logic in addition supports a 32-bit ARM

microprocessor, hardware floating-point unit, PS/2 serial ports, a 16-bit ISA bus, and serial CD

quality digital sound. All of these features, which are not essential to the proposed criteria of the

project, translate into the Cirrus Logic chip having almost twice as many pins as the Epson chip.

Putting the overkill of features aside, the Cirrus Logic chip is not supported nearly as well as the

Epson counterpart. The only document available for the CL-PS7500FE chip was a product

bulletin that merely contains an overview of features, compared to Epson’s 500+ page technical

manual on their chip. Epson included timing diagrams for interfacing the chip with several

different micro-controllers, pin descriptions, memory timing diagrams, and many other important

details. There are also several documented student design projects on the Internet that

successfully implemented the Epson controller.

 It was considered very important that the project contain some type of Ethernet

capability, so it seemed obvious to pick a variant of a Rabbit micro-controller with integrated

10Base-T Ethernet. Since the Epson controller requires 46 I/0 pins for its data and address

busses alone, the RabbitCore 3010 is a perfect match. It contains 56 general-purpose I/O pins.

This would leave 10 pins for the keypad interface and a few extra for debugging purposes. In

order to maximize the speed that an image is loaded onto the display, all of the data should be

sent to the graphics controller in a parallel fashion if possible. The Epson controller’s RAMDAC

operates at 40Mhz on a 16-bit bus. The Rabbit 3200 operating at 55Mhz should be able to keep

pace with the Epson when transferring a high-resolution uncompressed image.

 5

ECE 477 Final Report Spring 2004

Epson S1D13505 Cirrus Logic CL-PS7500FE
● Analog VGA output ● Analog VGA output
● External frame buffer using Standard
DRAMs

● External frame buffer using Standard
DRAMs

● Digital input bus ● ISA bus
● 128 pins ● 240 pins
 ● 32-bit ARM microprocessor
 ● Digital serial sound output
 ● PS/2 Serial Interface

Table 3-3. Comparison of Epson and Cirrus Logic graphics controllers.

4.0 Patent Liability Analysis

Several patents were found that, at first glance, covered similar functions as those

performed by the Digital Picture Frame Interface. However, upon further verification, it was

found that only one patent poses any threat with respect to issues of patent liability. This device,

marketed by Ceiva, Inc, consists of an LCD “frame” that dials in to a central repository and

downloads images to be displayed on the device. This device performs a similar function to

DiPFI; however, we feel that our device is an improvement because any used VGA device can

become a digital picture frame.

4.1 Results of Patent Search
Upon researching patents at www.uspto.gov[10], the following patents described in Table

4-1 were deemed relevant to the product being designed.

 6

ECE 477 Final Report Spring 2004

Patent # Description

6,442,573
Method and apparatus for distributing picture mail to a frame device

community [15]

Digital camera having display device for displaying graphical

representation of user input and method for transporting the 6,167,469

selected digital images thereof [14]

6,111,586 Electronic photo album editing apparatus [13]

6,058,428 Method and apparatus for transferring digital images on a network [12]

6,037,989 Still image transmitting device [11]

Table 4-1. Patent #’s and Descriptions of Relevant Patents.

1. Patent 6,037,989 - This invention converts the image signal reproduced by a camcorder, TV,

or VCR into serial data and transmits it to a personal computer as a still image signal, thereby

making it possible to edit, store, or print the image signal, resulting in convenient use[11]. This

device utilizes several transmit control signals to effectively transmit image data into a

computer’s serial port from an image sourcing device. Though this device transmits a still image

to be displayed, which is similar in function to the DPB being designed, it involves transmitting

data serially to a PC from another device. Therefore, the DPB does not infringe on this patent.

2. Patent 6,058,428 - Described here is a method and apparatus for transferring digital images on

a network. A signature list is examined wherein the signature list includes a unique signature for

each of the digital images requested for transfer[12]. The signature list is used to determine

whether each of the digital images is present, and the images are checked for integrity. This

provides an efficient means of tracking, recording, and processing image requests over a

network. The DPB does not, however, infringe on this patent as the designers plan on

implementing their own methods for sending images which do not involve the processes

described within this patent.

3. Patent 6,111,586 - The apparatus described is an object to provide an electronic photo album

editing apparatus which can easily edit an electronic photo album in compliance with a user's

 7

ECE 477 Final Report Spring 2004

various wishes[13]. This apparatus displays images stored on a personal computer to the

computer’s monitor in the form of a photo album giving the user a direct interface with which to

edit said photographs and corresponding decorative elements. However, this is all generated in

software and the DPB does not perform any digital signal processing on the given images as the

box expects to receive raw 640 x 480 image data.

4. Patent 6,167,469 - In this patent, a method and apparatus for transporting digital images is

described[14]. This apparatus pertains to the direct connection of a digital camera to a

communications network for the transfer of said media. One embodiment of this system pertains

to uploading the digital images to a website for direct display. The DPB connects to a network

in much the same fashion; however, the patent pertains to the implementation within a digital

camera, and does not relate to the image transfer being performed in the DPB.

5. Patent 6,442,573 - “A method and apparatus for distributing picture mail to a frame device

community” is described. The present invention comprises one or more interconnected frame

devices. Each frame device has a display region (e.g. an LCD) surrounded with a border region

modeled to resemble a traditional picture frame. Each frame device is configured to connect to

an interconnection fabric to periodically obtain image data from a centralized repository and then

display that data according to criteria established by an authorized user. The data repository is

populated with image data via the image collection process. Other information such as the

behavior characteristics of each frame device are established and/or managed via a picture box.

The picture box resides on a server computer and may be obtained by the user upon demand.” [15]

This patent very closely resembles the functions performed by the DPB, and thus it will be the

main topic of discussion with respect to the patent liability analysis.

4.2 Analysis of Patent Liability

4.2.1 Literal Infringement
All aforementioned tasks involve the processing, transferring, and display of digital

images, however none perform exactly the same function in exactly the same way as the DPB.

Therefore, the DPB does not pose any literal infringement to any product currently on the

market.

 8

ECE 477 Final Report Spring 2004

4.2.2 Doctrine of Equivalents
As was mentioned previously, Patent 6,442,573 was the only patent found that the DPB

may infringe upon under the Doctrine of Equivalents. This product has been released by the

company Ceiva located at www.ceiva.com[16]. The following characteristics of the patented

device are similar to those devised for the DPB. The device described in this patent consists of a

viewer or receiver that will be programmed to access a centralized repository via a

telecommunications network using a modem or other network device (i.e. an Ethernet

connection). The device is preprogrammed to access the repository to download and store any

images uploaded to the server. The frame device comprises a CPU, memory, and

telecommunications hardware. The inventors also describe what they call a “picture box,” which

differs completely from the DPB as defined here. The “picture box” they describe is a software

utility that allows the user to configure specifications such as image update frequency for the

frame device, and appears as a menu on the frame devices LCD screen. This is much like the

text overlay that will be generated on the DPB. Data is also transmitted via picture mail and any

image processing needed to fit the image to the display is done before transferring the data.

Unfortunately, the DPB performs, substantially, most of the same functions described

previously in substantially the same manner. One difference is that the patented device contains

its own frame device LCD display, whereas the DPB provides the internal circuitry and VGA

output without the extraneous cost of the LCD display. Another difference is that the DPB does

not store image data onboard other than the picture being displayed, while this device downloads

and stores all pictures in internal memory. This allows the DPB to be as inexpensive as possible.

4.3 Action Recommended to Avoid Infringement
To avoid infringement, two courses of action can be taken. Unfortunately, it would be

very difficult to adjust the DPB at this point in the design process so that it would not infringe on

the item described in Patent 6,442,573. Therefore, the two options are paying royalties to obtain

the rights for marketing the DPB or keep the DPB as a “personal project” that will only be used

for recreational purposes. In keeping with the true spirit of the design project, the second option

seems the most valid.

 9

ECE 477 Final Report Spring 2004

If any monetary payment was desired for this product, several steps would first need to be

taken. First of all, a more exhaustive patent search performed by an independent firm would

need to take place to determine if there are more potential infringements. If this search is

negative, then a patent lawyer would need to be located to review the patents already located,

especially Patent 6,442,573. If it were determined by a more credible source that the DPB

indeed infringed on this patent, Ceiva would need to be contacted to find out what royalties need

to be paid for the distribution of the DPB, and even this might not be sufficient to avoid legal

action. This would be a very expensive process, and some indication that the DPB would be a

commercial success would be desired before these actions would be pursued.

5.0 Reliability and Safety Analysis

Reliability issues pertinent to this project include component error, durability, emissions

(heat and noise), speed and accuracy of image processing and image display. Safety issues were

taken into account by securely casing the internal electronics and should not be a factor during

normal operation. The aim of analyzing reliability and safety issues is to achieve the best

performance with minimal cost and maximum customer satisfaction[17]. This is an important

aspect of any products development process as it investigates any possible dangers or unwanted

effects that may be experienced by the end user.

 The reliability analysis is focused on 5 major design components that are most likely to

fail due to frequent use, complexity or operating temperature and includes detailed calculations

of failure rates for each component. In addition, a FMECA (failure, mode, effects, and criticality

analysis) worksheet for the entire schematic grouped into functional blocks can be found in

Appendix H.

The 5 design components with the highest probability of failure due to heavy use during

operation are:

(i) Low Drop Out Voltage Regulators: 9–3.3V analog and digital and 9–5V digital

(ii) Rabbit 3000 microprocessor

(iii) IR receiver/decoder

(iv) EPSON graphics controller

(v) DRAM memory chip.

 10

ECE 477 Final Report Spring 2004

 Analysis and calculations are done with reference to the formulas and variables in the

Military Handbook Reliability Prediction of Electronic Equipment[18].

Failure rate calculation variables :

MTTF: Mean time to failure (λp)-1

λp : represents the predicted nuMBer of failures per 106 hours of operation.

λBD : die base failure rate

λBP : package base failure rate

λEOS : electrical overstress failure rate

λcyc : cycling factor

C1 : die complexity constant

C2: pin nuMBer constant

πT : temperature coefficient, based on junction temperature

πE : environmental constant, based on equipment use environment

πQ : quality factor, military (1-2) or commercial 3 -10

πL : learning factor, based on years device type has been in production

 πMFG : manufacturing process correction factor

 πCD : die complexity correction factor

 πPT : package type correction factor

 11

ECE 477 Final Report Spring 2004

(i) LDO Voltage Regulator : 9V – 3.3V analog (Texas Instruments REG103-33)

 Linear MOS Device λp = (C1πT + C2πE)πQ πL

Parameter Value Justification
C1 0.02 Linear, 101–300 transistors
πT 7.0 Linear, MOS, TJ < 85 0 C

 (assuming max temp.)
C2 0.0025 SMT, 6 functional pins, non-hermetic
πE 2.0 Ground fixed environment
πQ 10 Commercial
πL 1.0 Years in production > 2.0

Table 5-1. LDO Voltage Regulator Calculations.

 λp = (0.02*7.0 + 0.0025*2.0)10*1.0 = 1.45/106 hours

MTTF = 1/ λp = 689 655.17 hours = 78.73 years

The 9V-3.3V digital and 9V-5V digital belong to the same LDO regulator family of components

from the same manufacturer and have similar operating temperatures hence the above

calculations are applicable in determining failure rates for those components.

(ii) Rabbit 3000 microprocessor

Digital MOS Microprocessor with > 60000gates λp = λBDπMFGπTπCD + λBPπEπQπPT + λEOS

Parameter Value Justification
λBD 0.16 Logic device
πMFG 2.0 Non QML or Non QPL
πT 0.88 Digital MOS, TJ < 85 0 C (assuming max temp.)
πCD 25 1.6 cm2, assume 1 micron size
λBP 0.0044 128 pins
πE 2.0 Ground fixed environment
πQ 10 Commercial
πPT 6.1 Non-hermetic, surface mount
λEOS .065 Max voltage is 5.5v , ESD Susceptibility

Table 5-2. Rabbit 3000 Microprocessor Calculations.

 λp = 0.16*2.0*0.88*25 + 0.0044*2.0*10*6.1 + 0.065 = 7.6418/106 hours

MTTF = 1/ λp = 130 859.22 hours = 14.938 years

 12

ECE 477 Final Report Spring 2004

The rabbit microprocessor is being used as part of the core module which includes additional

components (SRAM, Flash and Ethernet) which will negatively affect its overall reliability and

performance.

(iii) 14-bit IR Decoder (IR-D14 IC)

Digital Microcontroller λp = (C1πT + C2πE)πQ πL

Parameter Value Justification
C1 0.02 MOS Digital, assume < 1000 gates
πT 0.88 MOS Digital , TJ < 85 0 C (assume same max

temp)
C2 0.0034 SMT, 8 functional pins, non hermetic
πE 2.0 Ground fixed environment
πQ 10 Commercial
πL 1.0 Years in production > 2.0

Table 5-3. 14-bit IR Decoder Calculations.

 λp = (0.02*0.88 + 0.0034*2.0)10*1.0 = 0.244/106 hours

MTTF = 1/ λp = 4 098 360.65 hours = 467.84 years

(iv) EPSON Graphics Controller (S1D13505)

LCD/CRT Controller λp = (C1πT + C2πE)πQ πL

Parameter Value Justification
C1 0.08 MOS Digital, assume 30,001 to 60000 gates
πT 0.88 MOS Digital , TJ = 85 0 C (max operating

temperature)
C2 0.068 SMT, 128 functional pins, Non-hermetic
πE 2.0 Ground fixed environment
πQ 10 Commercial
πL 1.0 Years in production > 2.0

Table 5-4. EPSON Graphics Controller Calculations.

 λp = (0.08*0.88 + 0.068*2.0)10*1.0 = 2.064/106 hours

MTTF = 1/ λp = 484 496.12 hours = 55.31 years

 13

ECE 477 Final Report Spring 2004

(v) 16-Bit EDO DRAM chip.

MOS Memory Device λp = (C1πT + C2πE + λcyc)πQ πL

Parameter Value Justification

C1 0.01 DRAM, Memory size > 256K

πT 5.0 Memories , TJ < 85 0 C (max operating temperature)

C2 0.019 SMT, 40 functional pins, Non-hermetic

πE 2.0 Ground fixed environment

λcyc 0 Non EEPROM device

πQ 10 Commercial

πL 1.0 Years in production > 2.0

Table 5-5. 16-Bit EDO DRAM Chip Calculations.

 λp = (0.01*5.0 + 0.019*2.0 + 0)10*1.0 = 0.88/106 hours

MTTF = 1/ λp = 1 136 363.63 hours = 129.72 years

Summary and Conclusions

Component Description λp / 106
hours

MTTF
years

U14 LDO voltage regulator (REG103-33) 1.45 78.73

R1* Rabbit 3000 Microprocessor 7.64 14.94
U16 IR Decoder 0.24 467.84
U10 EPSON Graphics Controller 2.06 55.31
U9 EDO-DRAM 0.88 129.72

Table 5-6. Component Failure Rate Summary (R1* Only rabbit headers are on schematic).

The average overall failure rate is λp : 2.454 / 106 hours or a MTTF of 149.308 years.

As shown above in Table 5-6 among the 5 components analyzed the Rabbit

Microprocessor is the most likely to fail by a large margin. Given that all calculations were made

using a maximum operating temperature of 850 C as compared to the standard 250 C these error

rates are higher than what would occur during normal operation of the circuit. It is still valuable

however to reduce error rates as much as possible and this could be achieved by adding a heat

sink to the Rabbit, EPSON and the LDOs which have the highest operating temperatures thus

extending the theoretical lifetime of the digital picture box.

 14

ECE 477 Final Report Spring 2004

FMECA (Failure, Mode, Effects and Criticality Analysis)

In conducting the FMECA Analysis, the DiPFI schematic is divided into its major

functional blocks:

Blocks Category Components
A Power Supply 9V Wall wart, Voltage regulators
B User Interface Push buttons, IR Decoder and Receiver
C Physical connectors VGA Connector, RJ-45 (on core module)
D Graphics EPSON, DRAM, PLDs , Crystal Oscillator
E Controllers Rabbit 3000 (Headers), Reset controller

Table 5-7. Major Schematic Categories and Components.

See attached worksheet in Appendix H for detailed analysis of all possible failure

conditions for each block, the resulting effects on other parts of the design and the level of

criticality for each type of failure.

There are two basic levels of criticality as pertains to this project:

LOW - meaning the overall output of the design will not be impacted and a display is still visible

on the display device.

HIGH - meaning the output will be affected and the design not function as expected. Specifically

a distorted image or no image at all present on the display device.

For LOW criticality failures a rate of λ < 10-4 will be accepted and for HIGH criticality failures a

rate of λ < 10-9 errors per hour of operation.

 15

ECE 477 Final Report Spring 2004

6.0 Ethical and Environmental Impact Analysis

As with any engineering project, there are numerous ethical and environmental concerns

that should be addressed. In particular, since this project utilizes solder and a printed circuit

board, there are almost certainly some environmental concerns. Those aside, it’s imperative to

provide the end-user with a product that is safe, usable, and reliable. All of these have ethical

implications that lie beneath them.

6.1 Ethical Analysis
 There are numerous ethical issues related to this particular project if it were to actually go

into a manufacturing stage. The first, and most important, is user safety. Since the device would

ultimately be enclosed in a “box” of some sort, permitting the user only to press buttons and

utilize the IR remote, many of these issues resolve themselves. However, there are still a few

basic issues that should be addressed. Care should be taken to organize the components in such a

manner as to minimize the risk of a short or some other failure related to the box being moved or

shaken (during an accidental fall, for instance). That aside, care should also be taken to ensure

that the box is grounded (if it or portions of it are made of metal) and that it isn’t possible for the

user to come into contact with any circuitry while pushing the buttons on the device. The device

is not designed to have a normal user service its internal parts. As such a warning label should be

clearly placed somewhere indicating that there are no user-serviceable parts inside and that the

user risks electrocution by opening the box. Once that is accomplished, there should be no

ethical liability (or legal liability, for that matter) with regards to a user attempting to service

components internal to the device. Finally, as a form of extra precaution, it would probably be

desirable to build some type of current monitoring device into the system to detect any shorts (if,

for instance, the device has some type of liquid spilled on it) and immediately terminate power.

 Next up is reliability, something that can easily destroy a product’s value if it doesn’t

exist. The device should be thoroughly tested in various operating conditions before being placed

into production. These conditions, of course, should reflect the intended environment…namely

indoors. Tests should include, but are not limited to, reliability (how long individual components

last), durability (how does the product deal with every-day “abuse”), and finally safety (what

happens if the device is repeatedly dropped, submerged in water, etc). Consideration must also

be made for the remote control and 9V wall wart. If appropriate target results aren’t met, it

would be prudent to select more reliable parts at that point or perhaps establish and notify the

 16

ECE 477 Final Report Spring 2004

user of the device’s life expectancy. As briefly touched upon at the beginning of this paragraph,

potential fallout from having an unreliable product includes numerous things. The device would

quickly gain a poor reputation; unforeseen problems could hypothetically result in some sort of

harm to the user (a seizure from a certain screen refresh frequency, for instance); and of course

product sales would decrease significantly.

 Finally in terms of ethics (and a quality product, for that matter) comes usability. This

particular device is fairly intuitive, although consideration should be given to the onscreen menu

system to ensure that it is easy to understand and efficient. Another issue which may not be

readily apparent is the fact that this is a networked device. In other words, network security

should also be ensured. Some type of authentication clearly needs to be added to ensure that only

proper users can obtain and manipulate control of the device. In terms of actual data security,

since it is assumed that the images will be displayed in a somewhat public setting anyway, data

security (i.e., encryption) is most likely unnecessary. Without these additional insurances, the

same problems mentioned above could again be encountered; namely, the device gaining a poor

reputation and the ultimate drop in sales revenue.

 Ultimately ethics play a large roll in the revision process before this product goes into

actual production. It is clear that the existing prototype is unfit for public use, and to ensure a

quality product, capable of turning a profit, numerous additional features should be built-in.

6.2 Environmental Analysis
 Ethical considerations aside, there are also environmental implications related to this

device. At first thought this may not be obvious, since many people consider digital systems to

be incredibly clean and efficient devices, at least with respect to “traditional” pollution.

However, this particular device has an environmental impact through all stages of its life; from

manufacture, to normal usage, and ultimately disposal/recycling.

 The manufacturing process realistically has the most potential to be environmentally

damaging. Traditional PCB fabrication processes tend (at least until recently) to use lead-based

solder which besides the obvious fact that it contains lead, also tends to release toxic fumes when

heated. With respect to this precautions need to be taken to properly contain and vent the fumes

as well as control the amount of lead released into the environment. This can be easily resolved

by using solder that isn’t lead based, but in some cases this can be more expensive. Printed

circuit boards contain amounts of lead as well and at this point there a real cost-effective method

 17

ECE 477 Final Report Spring 2004

around this fact is lacking. However, the manufacturing processes are mature enough that the

environmental impact is minimal. However, as we will see shortly, it does present some concerns

during device disposal. In addition to these potential environmental hazards, one also has to

consider the manufacturing process behind each IC used as well as other components. Each has

an associated environmental “cost.”

 In terms of normal usage, the only notable environmental impact would be with respect

to the energy band (i.e., radio waves, IR waves, etc) and energy usage. The device does utilize IR

signals and has potential to interfere with similar devices. Moreover, since this is a digital device

with switching logic it has the ability to generate its own electromagnetic field which could

easily interfere with other nearby devices. Overcoming this can be done through sane design

layouts as well as constructing the external casing of a material that would assist in reducing

EMF output. It is important to note that realistically only the former is a viable solution, as the

FCC generally frowns on reducing EMF just by throwing the device into a Faraday’s Cage.

Finally, something that is often overlooked is the device’s power consumption. Despite what

many believe, electricity is not in infinite supply. Moreover, many of the techniques used in

electricity generation are still taxing on the environment. As such, careful consideration should

be given to selecting low power devices and minimizing any potential extraneous energy usage.

These aside, the device is fairly benevolent during its operational life, at least with respect to the

environment.

 Of course, the end of a products life cycle can have almost as much of an impact on the

environment as its start. As mentioned earlier, PCB’s contain lead, which by itself essentially

mandates that instructions be included on proper disposal of the device. It should not simply be

thrown into the garbage. The best course of action would be to take the device to some type of

recycling plant equipped to handle PCB’s and related circuitry. Here parts may potentially be

recycled and it can be ensured that the lead containing materials are handled properly.

 As one can see, device design and manufacture is composed of more than simple

“engineering” concerns. There are numerous ethical and environmental issues that are at the

heart of a product’s design as well.

 18

ECE 477 Final Report Spring 2004

7.0 Packaging Design Considerations

Packaging Design Considerations

Physical features of the DiPFI include power and status LED’s to indicate the device is

on and that a picture is being transferred respectively. Push buttons are used to cycle through the

pictures stored on a remote PC. The device will be capable of being controlled remotely with the

same functionality as the push buttons. The DiPFI design layout consists of a light weight plexi-

glass casing with push buttons and LED’s on the front and the following connectors on the rear:

VGA connector, RJ-45 network connector and 9V power connector.

 In the following sections all of the packaging requirements pertaining to the DiPFI are

discussed. A detailed analysis of similar commercial products is included. Specifications for the

packaging of the DiPFI along with a detailed rendering illustrating the shape and size are in

Appendix B. A materials list of components needed for the packaging and an approximation of

the DiPFI weight and unit cost is included in Appendix E. A list of references to the commercial

products considered can be found in Section 13.0.

Commercial Product Analysis

 The digital picture box can be thought of as a modular separation, in terms of function

(information processing/decoding/transmission), from the display component of the many CPU

enabled or stand alone digital picture frame devices on the market. The DiPFI evolved from that

idea hence a product analysis of a digital picture frame is included. Our design aims to be more

flexible, the separation enabling the DiPFI to operate with any VGA display screen or monitor.

 The first commercial product analyzed is the Digi-Frame DF-1710[19] shown below in

Figures 1 & 2. This high definition display in a natural wood frame is wall mountable and loads

pictures via CD-ROM, another PC or the internet via Ethernet. It can show JPEG/MPEG-1

content, play MP3’s and has many additional features for storage, security, and remote control.

The dimensions of the frame are (WxHxD): 17.83" x 14.5" x 2.9" (23.5" x 19.5" x 3.25" with

frame) with a screen size of 13.38" x 10.58" and weight of 19 pounds.

 19

ECE 477 Final Report Spring 2004

Figure 7-1. Digi-Frame Front. Figure 7-2. Digi-Frame Back.

The most impressive aspect of this product is that so much functionality is hidden behind

the XGA-resolution display adding a depth of only 2.9” to the frame. The size of the display is

striking and with the natural wood frame is an appealing package. In addition the packaging

allows the frame to be rotated vertically allowing the customer to choose their preferred

placement.

 The main disadvantage of such a large display and frame, (24” x 20”) is the lack of

portability. Once placed or mounted this product can’t easily be moved due to its weight and size

and the sensitivity of the CD-ROM drive is an additional concern.

 Our design packaging implements the same RJ-45 connector allowing picture

transmission from the internet but adapts this interfacing to enable output to any VGA monitor or

LCD display. The fundamental difference in packaging that makes our digital picture box

unique is that the image processing is separated from the display allowing the consumer to

switch the display with ease. The small size of our product means it is portable and allows it to

be placed on a desk, beside or even out of sight behind the desired display.

The second commercial product being analyzed, the Vosonic Multi Media Viewer[20] has

slightly differing functionality but shares many of the same packaging considerations and goals

as our device.

 20

ECE 477 Final Report Spring 2004

Figure 7-3. Vosonic MMV-80 (Dimensions: 95 x 89 x 15 mm - Weight: 81g.).

The MMV plays JPEG/MPEG/MP3 file formats, supports various memory cards is compatible

with Windows 98/SE/2000 and Mac OS v8.6+ with USB driver and can play these files through

NTSC/ Pal TV’s or TFT monitors. As shown above, it can be controlled remotely with an IrDA

remote.

 The MMV has a compact and sleek design with an easy to understand operation keypad making

it appealing to consumers as it is portable and can sit atop or beside whatever screen is being

used for the display. The outputs and inputs are well arranged on the sides of the casing and the

LED’s positioned on top where they can clearly be viewed. In addition the panel for IR signal

reception is prominently placed ensuring a wide field of sight for the remote control operation in

a room.

The most desirable aspect of this packaging is the user friendly and compact design

which makes good use of space without cluttering or being too small for easy use. The buttons

are evenly spaced and labeled as to their function making the product easy to understand and

operate. These are features we incorporate into the design of our DiPFI packaging. With careful

and creative planning we may be able to achieve a more compact design due to the fact that the

DiPFI will not have a memory card slot and will possess only one 15 pin female HD connector

as a video out. In addition the four pushbuttons (left, right, function and power) are the only

functions needed on the remote control hence a smaller sleeker version will be used in our

 21

ECE 477 Final Report Spring 2004

product. We use similar plastic casing that is lightweight but tough to make the picture box

sturdy and easily portable.

8.0 Schematic Design Considerations

8.1 Theory of Operation
8.1.1 Rabbit 3010 Core Module

The Rabbit 3010 best suites the need of this project because of its Ethernet capabilities as

well as its large nuMBer of I/O pins. The Rabbit has a maximum internal clock frequency of

29.4 MHz generated by a 14.7456 MHz crystal. The Rabbit boasts an internal clock doubler that

allows it to achieve the maximum clock frequency of 29.4 MHz. Therefore, the graphics

controller is clocked externally using a 25.175 MHz clock, while running the Rabbit at its

maximum clock rate of 29.4 MHz. This clock frequency gives a ~183 kbps baud rate, which is

sufficient for the needs of the project. The Rabbit takes a regulated 3.3 VDC power supply. To

achieve this from a 9 V unregulated power source, a 500 mA Low-Dropout Voltage Regulator[6]

is used to drop the 9 V to a regulated 3.3 V. The RCM 3010 also contains 128 kb of SRAM

which is adequate for software storage and any picture buffering as needed.

Another consideration on the Rabbit is how to interpret the image data packets arriving

on the Ethernet port. The PC connects to the Rabbit controller using TCP/IP and begins sending

data pixel by pixel. Each packet contains address and data information. When the packet arrives

at the Rabbit port, the packet is read and the data dropped into a buffer. Another routine works

on forwarding any information contained to the graphics controller. Because of a lack of input

pins, the address is loaded into two Atmel 22V10 PLDs. These were chosen because of their

operation at 3.3V, as well as their DIP package. The PLDs take two mode pins for a total of four

states. One mode latches the lower 11 of 21 address bits into one PLD. The second mode

latches the rest of the address bits into PLD number two. The last mode enables the data bus and

begins communications with the Epson Controller. Since there are eight control signals on the

Epson, a third PLD is used to multiplex the signals as necessary.

8.1.2 Epson Graphics Controller

With 130+ pins, the Epson graphics controller poses a major interfacing concern. It has 21

address pins, 16 data pins, 9 memory address pins, and 16 memory data pins. It also contains 5

 22

ECE 477 Final Report Spring 2004

pins that interface to a standard VGA connector for picture display. As aforementioned, this

interfacing is handled with a minimum number of PLDs and control signals. The Epson data

sheets do not stress any timing constraints, so this will be a sufficient method for transmitting the

image data.

Another concern on the Epson is its onboard Digital to Analog converter, which requires a

separate 3.3VDC power and ground from that of the digital circuit. We accommodated this

using a separate low-dropout regulator and ground. The DAC also requires a 4.6 mA current

reference, IREF, which is provided by a 2n2222 NPN transistor.

8.1.3 Sharp IR Receiver[7] and Reynolds Electronics Decoder[8]

The Sharp IR receiver operates at 40 kHz, which is the modulation frequency of the standard

Sony remote control protocol. This way, any Universal Remote can be used to control the

device. An issue arrives with unwanted interference from other Sony-type remotes, in that the

device is not intelligent enough to differentiate between two remotes transmitting with the same

protocol. A solution has not been conceived, and it is not a priority at this time.

A Reynolds Electronics IR decoder chip was found that inputs the received IR signal and

toggles a corresponding output pin. This works for buttons 0-9 and the channel and volume

buttons. The channel and volume buttons are utilized in this implementation. The Rabbit

monitors its input pins and watches for a toggled bit at the decoder output. It then executes the

appropriate command. The Rabbit can sink up to 6 mA of current, so the output current of the

decoder chip was monitored early on to ensure compatibility with the Rabbit.

An IR decoder that operates at 3.3 V could not be found. As such, a final low-dropout

regulator is used to achieve a digital 5 VDC power supply. Also, the Rabbit can handle a

maximum 5.5 VDC at its input pins, thus enabling the direct connection of the decoder to the

input pins of the Rabbit without using level translation.

8.1.4 LEDs and Pushbuttons

There is little concern as far as power/current limits here. Two different colored LEDs, green

and yellow, are used to indicate status signals, blinking when an image is being transferred. The

source/sink limit for a Rabbit at 29.4 MHz is 6 mA, so a current limiting resistor has been used.

 23

ECE 477 Final Report Spring 2004

Two Rabbit input pins are used to toggle the LEDs state. The LEDs can be shut off using the Hi-

Z state of both input pins, but there was no need for this in the current implementation.

8.1.5 Clock

A 25.175 MHz oscillator is used as a separate means to externally clock the Epson

Graphics Controller.

9.0 PCB Layout Design Considerations

In order for the aforementioned components to work properly together, careful attention

must be given to the printed circuit board layout. The fact that the Epson contains a DAC, for

instance, affects layout strategies considerably. The remainder of this section focuses on what

exactly these concerns are as well as the approaches used to overcome them.

 As mentioned in the Motorola Semiconductor Application Note, one of the most

important concerns for layout is the power system. Specifically, keeping components that are

sensitive to noise (analog devices, for instance) separate from those that create noise (i.e., high

power devices, fast switching devices, etc). In the digital picture box’s case there are two

primary components that need to be kept separate from each other: the digital part of the board

and the analog DAC present on the Epson graphics controller. This separation is achieved

through a couple of ways. First, the DAC has a separate LDO for its power source. This, coupled

with the separation of DAC and digital ground via a ferrite bead, eliminates the ability of digital

noise to be directly introduced into the DAC.

 At this point there are still indirect concerns; namely, coupling through magnetic

radiation (i.e., nearby digital components and their traces affecting the DAC through EMF

coupling). A few steps were taken to prevent this. First, all analog components were kept a

notable distance from other digital components. Second, in most cases traces that had to run over

or under a trace relating to the analog part of the system were run in a manner that made them

perpendicular to the analog traces, thus reducing the EMF coupling. Finally, the +5V LDO and

related components were placed on the opposite side of the board, in an attempt to keep the

relatively higher power aspects of the system as far away from the DAC and analog components

as possible.

 24

ECE 477 Final Report Spring 2004

 In terms of the general board layout, numerous methods were employed to reduce EMI

and related noise. For starters, traces run on the bottom layer of the board were done from top-to-

bottom in most cases whereas traces run on the top layer were done from left-to-right. Again, as

mentioned above this was done to reduce the EMF coupling and induced noise between traces.

The notable exception to this is the region surrounding the Epson controller. Given the roughly

6.5mil sized pads and relatively small spacing constraints, many of the traces on the top layer

ended up running from top-to-bottom. Next, decoupling capacitors were placed as close to the

IC’s as possible to reduce noise and compensate for current spikes related to unexpectedly high

transistor switching. Decoupling capacitors were generally placed directly beneath the main IC’s

(which consist of the Epson controller, the EDO DRAM chip, the IR controller, and LDO

regulators). Finally, per the Motorola document’s recommendations, the 25.125MHz crystal was

also placed as close to the Epson (the only externally clocked device onboard) as possible. Clock

traces were kept as short as possible and any inductive loops were avoided at all costs.

 EMI aside, component placing was also influenced by actual components’ purposes. The

VGA connector was placed on a board edge, as would be expected. The IR receiver was also

placed on an edge in addition to the push buttons and LED’s. The rabbit’s built-in Ethernet jack

is not on an edge for routing simplicity. Instead, we intend to connect an “extender dangle” to the

rabbit and run it outside of the actual box.

 Priority was also taken into consideration during the routing process. The Epson, being

the smallest and most complicated chip, was routed first; followed by the DRAM, the Address

and Control PLD’s, the Rabbit microcontroller, LED’s and Pushbuttons, “Analog” components,

“IR” components, and finally the debug headers.

 Most trace sizes were 12 mils with the exception of traces related to the Epson. Larger

trace sizes were attempted for power, but generally caused problems in most areas. As such, 12

mils is used consistently throughout the board in most cases. 90 degree angles were also avoided

whenever possible.

 All of these considerations and other minor ones were combined and utilized in what

hopefully turns out to be a successful attempt to create a usable and environmentally-friendly

PCB layout.

 25

ECE 477 Final Report Spring 2004

10.0 Software Design Considerations
 The Rabbit 3000 micro controller has several general design considerations. Since the

controller comes with a Dynamic C compiler, it automatically handles the memory mapping

and management at compile time. The compiler also sets up the necessary startup code so

the downloaded program will automatically execute on power up. There is also support for a

simple multitasking environment included with the compiler. The current proposed

implementation for sending address information to the Epson controller is somewhat

inefficient. Transferring a single picture could take a fair amount of time. It was decided

that in order to create a responsive software interface, we should take advantage of the built

in multitasking functions to easily interrupt a picture transfer in progress. There are three

basic C functions that implement a cooperative multitasking environment. First, a

“costatement” designates a piece of code to a single running process. Within that process, it

has the option to call the “yield” function. This gives up control to the next process. When

the process that called yield obtains control again, it returns to the line of code after the yield

function. The “abort” function is very similar to yield; however, when the process regains

control it starts execution at the beginning of the costatement block.

10.1 Software Design Narrative

 In order for the PC program module and Rabbit module to successfully communicate

together, they must obey some type of protocol. It was decided to implement a custom

TCP/IP Picture Frame Protocol. The packet data that is sent from the Rabbit to the PC file

server is just plain text ending in a null terminating character. The Rabbit only needs to send

four commands to the PC: “nextpic,” “prevpic,” and “recv.” “Nextpic” tells the PC to

change its current file pointer to the next available picture file. “Prevpic” tells the PC to

change its current file pointer to the previous picture file. “Recv” tells the file server to begin

sending the current picture file. The packet data that is sent from the PC to the Rabbit

requires the use of two length fields. The Rabbit dumps all of the incoming data into a

temporary buffer. A total length field that is placed at the beginning of each packet is

necessary to distinguish between consecutive packets dumped into the buffer. Once a single

packet is extracted from the buffer, it is necessary to separate the included command from

binary data. The second part of each packet is a command length integer, which is the

 26

ECE 477 Final Report Spring 2004

nuMBer of bytes the included command occupies. There are also four commands sent to the

Rabbit: “sendpicname,” “sendnewpic,” “sendnextpixel,” and “sendpixeladdress.”

“Sendpicname” includes a text string that is the filename, as it is stored on the PC.

“Sendnewpic” resets the current address pointer to the frame buffer on the Epson graphics

controller to the first address, and sends the first pixel’s color data. “Sendnextpixel”

increments the frame buffer address pointer, and sends the corresponding color data for that

pixel. “Sendpixeladdress” sets the frame buffer address pointer to an absolute address, and

then sends the color data for that pixel.

Incoming Rabbit packets Incoming PC packets

* Packets can include Commands and Data * Null terminated commands

* Total length used to distinguish between

consecutive packets stored in the Rabbit's

temporary buffer

* Commands Include: getpicname, nextpic,

prevpic, and recv

* Command length used to separate the Command

from Data

* Commands include: sendpicname, sendnewpic,

sendnextpixel, and sendpixeladdress

Table 10-1. Summary of TCP/IP Communication Protocol.

 The Rabbit program consists of several programming modules, which are actually

costatements that implement the cooperative multitasking environment described earlier.

The first costatement constantly runs the tcp_tick command. This is done to perform all

the necessary low-level TCP/IP bookkeeping.

The second costatement “incoming_tcp” starts listening on port 39 for any TCP/IP

connections. Once it detects a connection, it takes all incoming data, and drops it into a

temporary circular buffer called “indata.” If “indata” is full, it yields control until there is

enough space to put the data into the circular buffer. This is repeated while the PC is

connected. Once the PC disconnects, the Rabbit goes back to listening on the network port.

 27

ECE 477 Final Report Spring 2004

The third costatement “monitorIR” polls the IR input pins two samples at a time. When

an IR remote button is pressed, the logic value on the output of the IR decoder pin changes.

This can be detected when two consecutive samples are opposite logic values, indicating a

recent logic change. Whenever a button press is detected, the Rabbit sends the corresponding

command to the PC if a network connection is present.

The fourth costatement “monitor_buttons” is the same as “monitorIR,” except it

debounces the switch inputs and sends the corresponding command to the PC if there is a

network connection. The switches are debounced by taking three samples of each input pin.

There is a delay of 50 ms inserted in between each sample via the “DelayMs” function that

automatically configures a timer interrupt. Once three samples agree, the logic value of the

samples is compared with the previously obtained agreeing samples. If a logic value zero

was followed by a logic value one, indicating a rising edge, then a button press was

successfully detected.

The fifth costatement “decodePCdata” consumes data contained in the circular buffer one

command at a time. Each decoded command is stored in a temporary location. The

command length is read in, and then the entire command is read in if possible. If it is not

possible to decode an entire command, control is yielded to the next process. Once the

command is decoded, the proper address is sent to the address bus of the PLDs that interface

with the Epson graphics controller. The address is clocked in 8 bits at a time for three clock

cycles until the entire address is present. The 15 bit color data is then sent out on the data

bus and the Rabbit generates the necessary signals to load the current pixel into the frame

buffer of the Epson graphics controller.

 28

ECE 477 Final Report Spring 2004

Figure 10-1. Flow Chart of Rabbit Programming Module.

 29

ECE 477 Final Report Spring 2004

Programming

Module Description

tcp_tick Constantly called to perform all necessary low-level network bookkeeping.

incoming_tcp

Listens to the network port. When connected, it drops all incoming data to a circular

buffer if possible.

monitorIR

Monitors the infrared port. If a command is detected, the corresponding command is

sent via TCP/IP to the PC.

monitor_buttons

Monitors the button input. If a command is detected, the corresponding command is

sent via TCP/IP to the PC.

decodePCdata

Decodes the data stored in the circular buffer. The pixel data at the corresponding

address is sent to the Epson controller.

Overlay_mode

A basic menu system is displayed. All input buttons are now directed to this function

while in the menu system.

Table 10-2. Summary of Rabbit Programming Modules.

 The final major programming module is the TCP/IP client that can run on any standard

Linux PC. It is a command line program that takes two arguments: IP address of the Rabbit,

and port nuMBer of the Rabbit server. The IP address argument can actually be a domain

name that will automatically be resolved on execution. The program begins by scanning the

local directory for picture files in the .ppm format. It has a built in picture pointer that starts

off pointing to the first picture in the directory. It then tries to connect to the IP address and

port coMBination passed via the command line. When connected, it constantly tries to read

in command data from the Rabbit. Once the Rabbit server sends it a command, it executes

the corresponding command and then returns to reading commands. The “nextpic”

command simply changes the picture pointer to the next available picture file. The “prevpic”

command changes the picture pointer to the previous available picture file. The

“getpicname” command from the Rabbit causes the PC to respond by sending a

“sendpicname” command back to the Rabbit with the name of the file pointed to by the

picture pointer as the data field. When the PC receives the “recv” command, it must proceed

to send the entire picture in order to the Rabbit. As it sends picture data, it checks to see if

 30

ECE 477 Final Report Spring 2004

another command has been received. Other commands can interrupt this command and take

over execution. This is done so the user does not have to wait for an entire picture to display

to cycle through to a different picture. In order to send a picture, the current picture file is

broken down into pixels. Each pixel is converted from 24 bits per pixel to 15 bits per pixel

because the Epson can only support a maximum of 15 bits per pixel without using a color

table. First, the “sendnewpic” command is sent to the Rabbit that resets the Epson’s address

to the first address in the frame buffer and loads the first pixel color data. Every picture

thereafter uses the “sendnextpixel” command to implicitly increment the address pointer as

well as load in the corresponding pixel color data.

 31

ECE 477 Final Report Spring 2004

Figure 10-2. PC Client Flow Chart.

 32

ECE 477 Final Report Spring 2004

11.0 Version 2 Changes

 After successfully completing our design project, there are several aspects we would

change and improve if given a chance to revamp the final solution.

 First, we would have tried to minimize the size of the board layout by adding two more

layers: ground and power. This would have enabled us to route the Epson without so many

problems. The Rabbit headers and the surface mount capacitors near the Epson could also have

been routed much more easily. All of these components were surrounded by numerous 6 mil

traces. We spent over 10 hours simply trying to route a power trace that was located on a surface

mount capacitor in the midst of hundreds of 6 mil traces. We also could have packed all of the

components more closely together in more strategic areas.

 Next, we should have searched and asked for help until we found an actual 2 megabyte

EDO DRAM chip. The final display on our project was slightly distorted due to the fact that we

had a 4 megabyte DRAM chip, when the Epson datasheet explicitly stated that the maximum

DRAM supported was 2 megabytes.

 We should have combined all of the PLDs together into a larger variant so that we could

have successfully implemented a 21 bit address counter. We could have just loaded the address

in for the first pixel and then incremented the address on the PLD thereafter. This would have

saved us the bandwidth required to send address data from the PC, eliminated the nuMBer of

clock cycles required to clock pixels into the Epson, and sped up the process of picture display

altogether.

 We should have upgraded Dynamic C to the newest version at the beginning of software

development. We discovered numerous bugs in Dynamic C 8.10 that wasted more than 20 hours

of our time. Specifically, during the development of an alternate web server in case we could not

get the Epson to work, countless hours were spent debugging code that was fine. We narrowed

down the problem to Dynamic C’s fwrite function. Whenever this function was called, it

corrupted the costatement stack so that on return from a yield function it would return to a

random spot. After upgrading to the newest version, our code worked as originally expected.

 Finally, if we had more time we would have increased the functionality of the picture

box. A wireless bridge could have easily been connected to the Rabbit’s RJ-45 jack. We could

have further added an on screen menu and a slideshow mode.

 33

ECE 477 Final Report Spring 2004

12.0 Summary and Conclusions

This entire project, from conception to realization, has unquestionably been one of the

most memorable experiences of our college careers. It was quite an event to, after spending over

14 weeks working on a single project, see it actually work successfully. By utilizing a large

portion of the knowledge and intuition gained from previous classes (and a large amount of

knowledge obtained throughout the entire semester) we were able to implement something that

could actually be manufactured in industry.

 One of the most important things that we all learned early in the process was how to

decipher datasheets and use that information to ensure compatibility between particular device

components. This allowed us to have at least a small glimmer of hope that everything would

“play nicely” together and ultimately produce a functioning device. Other technical skills

acquired include new debugging techniques for (especially) hardware and also software. In terms

of hardware, now more than ever we had to ensure that individual blocks of our design worked

correctly before throwing it all together. It was incredibly reassuring to be able to hook up the

Digital Logic Analyzer and see that the PLD’s were, in fact, doing what was expected of them.

The same general idea applied to software as well; many aspects of the programming were

broken up into small pieces which, after ensuring they worked correctly, were combined with

others to make the final version.

 Ultimately this entire process has left us with what could easily be considered the final

tools required to enter industry. Unlike the more theoretical courses, we started from scratch and

came up with a fully functioning device to accomplish our goals. We relied solely on information

publicly available from companies and used that to select components that would interface well

and properly. We developed our own working schematic, created our own custom packaging,

routed a printed circuit board, wrote our own software, and developed documentation for the

end-user. In summary, we experienced the entire industry design process from start to finish.

Through the late hours and brief confrontations, we accomplished something which quite frankly

seemed incomprehensible, even impossible at the beginning of this semester.

 34

ECE 477 Final Report Spring 2004

13.0 References

[1] Rabbit 3010 Core Module

http://shay.ecn.purdue.edu/~477grp12/datasheets/rabbit3000_core_manual.pdf

[2] Atmel 22V10 PLD

http://shay.ecn.purdue.edu/~477grp12/datasheets/atmel_PLD.pdf

[3] Epson Graphics Controller

http://shay.ecn.purdue.edu/~477grp12/datasheets/epson_manual.pdf

[4] 4 MB EDO DRAM

http://shay.ecn.purdue.edu/~477grp12/datasheets/dram.pdf

[5] Epson 25.175 MHz Clock

http://shay.ecn.purdue.edu/~477grp12/datasheets/clock.pdf

[6] Texas Instruments Low-Dropout Voltage Regulators

http://shay.ecn.purdue.edu/~477grp12/datasheets/ldo.pdf

[7] Sharp IR Detector

http://shay.ecn.purdue.edu/~477grp12/datasheets/sharp_ir_detector_data.pdf

[8] Reynolds Electronics IR Decoder

 http://shay.ecn.purdue.edu/~477grp12/datasheets/rentron_ir_decoder.pdf
[9] Cirrus Logic System-on-Chip with CRT/LCD Controller

http://shay.ecn.purdue.edu/~477grp12/datasheets/cirruslogic.pdf

[10] United States Patent and Trademark Office

http://www.uspto.gov

[11] United States Patent 6,037,989: Still image transmitting device.

[12] United States Patent 6,058,428: Method and apparatus for transferring digital

images on a network.

[13] United States Patent 6,111,586: Electronic photo album editing apparatus.

[14] United States Patent 6,167,469: Digital camera having display device for

displaying graphical representation of user input and method for transporting the

selected digital images thereof.

[15] United States Patent 6,442,573: Method and apparatus for distributing picture

mail to a frame device community

 35

ECE 477 Final Report Spring 2004

[16] CEIVA Logic, Inc.:

http://www.ceiva.com

*Note: References [11]-[15] found by performing patent search at [10]

 [17] “Designing for Reliability, Maintainability and Safety – Parts 1, 2 and 3”,

 Circuit Cellar, December 2000, January 2001, April 2001.

[18] MIL-HDBK-217F Reliability Prediction of Electronic Equipment

http://shay.ecn.purdue.edu/~dsml/ece477/Homework/Spring2004/Mil-Hdbk-217F.pdf

[19] Digi-Frame DF-1710

 http://www.digi-frame.com/df1710.html

[20] Vosonic Multi-Media Viewer

http://www.vosonic.co.uk/mmv80.html
[21] Richard Stevens. Unix Network Programming – Networking APIs: Sockets and

XTI. Upper Saddle River, NJ: Prentice Hall PTR, 1998.

[22] Dynamic C – TCP/IP User’s Manual. Davis, CA: Z-World, Inc., 2002.

 36

ECE 477 Final Report Spring 2004

Appendix A: Individual Contributions

Contributions of Phillip Boone:

 Initially I searched for a graphics controller, an EDO DRAM chip, and a JPEG decoder

chip. I found a Cirrus Logic graphics controller that met all of our design constraints. I also

looked for an evaluation board for the Epson chip Jeff found so that we could try and prototype

our design. I sent out various emails to companies asking about products that I thought were

actual JPEG decoder chips asking for samples. I could not find an actual chip that decoded

JPEG image data, only ASIC software modules. I then found a Texas Instruments DM_270

media processor that included JPEG decoding and everything else our project needed. I asked

for samples, but it turned out that this chip was not yet completed finished. Finally, I searched

for an EDO chip for a few days on the internet. After I couldn’t encounter one I brought several

old EDO DRAM SIMM’s that I had at home to see if we could use them.

 I also helped solve a few hardware issues that we encountered. I discussed the glue logic

necessary to latch in the 21-bit address into the Epson using only 16 Rabbit output pins with Jeff.

We wanted a single clock to drive both the Epson and the Rabbit. I figured out where the clock

was generated on the Rabbit core module so that we could route that to the Epson. We were later

told to simply use an external clock. I also tried to figure out how to generate a clock on one of

the Rabbit output pins. Finally, I helped with the layout homework. I routed part of the Epson

controller, the PLD’s, and a header.

 I obtained the Rabbit 3000 microcontroller from Chuck. I printed up, read through

partly, and had several Rabbit manuals bound. I brought the Rabbit evaluation board home and

setup various test programs. I setup the cooperative multitasking environment on the Rabbit

using costatements. I figured out the protocol necessary for communication between the Rabbit

and PC. I wrote all of the software code for the Rabbit except for the functions that Jeff wrote to

clock in color data into the Epson’s frame buffer. This included code to debounce the switches,

handle IR input, dump incoming Ethernet data into a circular buffer, and finally decode data

stored in the circular buffer. Just in case the Epson did not work, I wrote a web server on the

Rabbit that could dynamically change the contents of a file on the web page. This required

implementing a file system on the Rabbit’s SRAM, and dynamically changing the contents of a

certain file with picture data using Dynamic C’s file system functions. I had a working web

 A-1

ECE 477 Final Report Spring 2004

server that had a link to a JPG file. Once the connected PC sends a picture to the Rabbit, it was

possible to see the changes on a remote computer by using any standard web browser. This

proved that we had successfully received image data on the Rabbit.

 I wrote all of the software for the PC client. I figured out how to setup a TCP/IP

connection, send data, and receive data. I implemented the code that scans the local directory for

picture files, and constructs a list of all files found. I wrote the code that decodes all of the data

in the PPM picture file, scales the colors from 8 bits to 5 bits, and formats the color data so the

Epson can use it. I setup the wait loop that detects incoming commands from the Rabbit server,

and acts accordingly. I debugged the final version of the PC client software. I worked with the

final version of the picture box, and tweaked the software so that it would stop displaying picture

data after an absolute address. This was done to account for the fact that we were using a 4

megabyte EDO DRAM chip when the Epson required a 2 megabyte chip.

 I helped construct the casing of our final picture box. I cut most of the Plexiglas pieces,

glued them together, and helped make sure the box still worked in our casing.

 I think that I put in my fair share for our project and I should receive the full grade that

our project deserves. I directly helped satisfy every one of the four outcomes that we satisfied. I

did not miss any group meetings or progress briefings.

Contributions of Bill Kreider:

Over the course of the semester, I performed several very important tasks that directly

contributed to the success of the project. First, I researched and ordered the majority of the

components that went into the design, excluding the Epson, DRAM, and Atmel PLDs. This

required reading and downloading datasheets into the group account for further use. I designed

the Infrared subsystem, both evaluating the performance in prototype and in the final PCB

implementation. I assisted in testing the IR software and debugging the code after the initial

implementation. After acquiring from Jeff the functionality of the Epson and its interactions

with the PLDs, I completed the Schematic and Theory of Operation and maintained this

throughout the semester as certain components changed within the project. I assisted with the

layout by looking up the footprints for our components while Jeff entered them into the

computer. The majority of the soldering was done during a week when I had two other exams,

and thus I was unable to assist during this time. However, as problems arouse throughout the

 A-2

ECE 477 Final Report Spring 2004

semester, I would solder as needed. I did solder the DRAM chip and a few other small

components. I assisted as needed during most of the Epson debugging, helping Jeff run his test

code and interpret the Logic Analyzer responses. I was also part of the final stages of

implementing Phil’s software on the device, and I tested the board after a major component

failure to ensure that no other component was in danger. I also completed the Patent Analysis

homework, and worked with the group in selecting and assembling the final casing for the

device. Throughout the semester, I also maintained sole responsibility for the team website. I

conceived the initial design and created templates for each team member to use for updating their

notebooks, if desired. I was responsible for organizing the presentations, and I updated all

midterm slides for the final presentation. From the very beginning, I attempted to organize

group meetings and delegate individual weekly tasks. I felt that in order to motivate the group,

we all needed to be on the same page week after week. As the semester progressed, it became

increasingly difficult to organize group meetings, and I spent time mediating arguments between

members of the team. I feel the important aspects of the project were completed successfully

and that the success criterion that was not fulfilled was miniscule compared to the others. As

such, with the overall success of the project and the work that I put forth, I feel that I deserve an

A in ECE 477.

Contributions of Egomaron Jegede:
My contributions to the project over the semester are as follows:

I worked closely with Phil in the development of software for the PC client and Rabbit in

order to communicate and transmit data. I contributed ideas for the structure of the software and

researched the development environment for the rabbit. I wrote a .ppm decoder to format and

send information pixel by pixel to the rabbit. Jeff’s ppm decoder was the version used in the PC

client software module. I modified, tested and debugged several revisions of the software to

communicate between the PC and the Rabbit. (Phil set-up the network and socket programming

code). As a back-up plan to achieving the third outcome which was the ability to receive jpeg

data via Ethernet, I worked with Phil on the creation of a web server to be run on the rabbit that

could be accessed with a web client program to view the graphical data. This was proposed as a

viable option in the event the EPSON could not be successfully interfaced with the rabbit. I

helped modify sample code to customize and streamline its functionality as it originally included

 A-3

ECE 477 Final Report Spring 2004

an FTP server and spent a significant amount of time debugging, testing and modifying the web

server code to completion.

I drafted the initial block diagram showing the major functional blocks of our design. I

researched available rabbit microprocessors and development kits to determine part specifics,

prices and suitability for our project. I created and updated the conceptual illustrations for the

packaging of our design, contacted companies in order to obtain custom made casing and when

this was not feasible, purchased the materials and oversaw the construction of our plexi-glass

casing (done by all group members).

Regarding homework contributions I participated in all group exercises as we shared the

work equally and completed my sections on time. I helped route the final few almost impossible

traces on the PCB Layout. Individually I completed the Packaging Specifications and Design as

well as the Reliability and Safety Analysis and FMECA worksheet. I compiled and edited the

User Manual including an updated and annotated version of the product illustration. I reviewed,

edited and contributed ideas to the individual homework completed by team members and

participated fully in group demonstrations and presentations. I attended and contributed ideas

and updates in the weekly progress briefings with course advisors through the course of the

semester. I contributed significantly to achieving the defined success criteria for this senior

design project and deserve an A in this course.

Contributions of Jeff Turkstra:

 I spent an incredible amount of time this semester working to ensure that our project

would be successful (and that I would graduate) upon completion of this semester. What follows

is a pseudo-list of what I’ve done this semester.

 For starters, I helped select just about every component used for the project. I also

ordered quite a few of the components (Epson, DRAM, PLD’s, etc). Moreover, I provided

significant help to Bill during the schematic homework (I feel that at least half of the schematic

was done by me). I also did the PCB layout with very little assistance from others. Twice. The

first layout suffered from the infamous screwed up rabbit headers. I also did almost all of the

board propagation once it arrived. Notable exceptions include the DRAM, the Epson chip (done

by Chuck), a couple of pushbuttons, and a capacitor or two. I did all of the fly wiring.

 A-4

ECE 477 Final Report Spring 2004

 In terms of the PLD’s that were used in this project, I alone figured out how to use CUPL

to program them and tested them thoroughly before soldering them onto the board. I also came

up with solution to the Dataman checksum issue that I encountered.

 PLD’s aside, I took care of anything directly relating to the Epson. I wrote all of the code

to provide the basic interfacing routines (writing a 16-bit value to any given address, making the

screen entirely one color, etc). I also did all of the testing and debugging with respect to the

Epson. This includes, but isn’t limited to, connecting and using the Digital Logic Analyzer,

generating test signals with the PLD’s and verifying them with a DMM, and modifying the initial

interfacing code to read back from the Epson’s data registers.

 I additionally provided the source code for a program that I wrote to decode a PPM file,

which is the basis for Phil’s PPM decoding code (mine was written in C++).

 I also wrote the code responsible for driving the LED’s as well as the initial code used to

poll the IR and pushbuttons (Phil was responsible for the final code).

 I installed and configured the NewsPro CGI script that Bill and I used to maintain our

notebooks on the website.

 I provided significant assistance with construction of the actual package that houses our

device.

 I sacrificed a video card for our VGA connector, and when that didn’t appear to be

working, a VGA port from my VGA switch box.

 I was responsible for and did all of the video editing for our group video.

 Of course, I was also the team leader. I think that I played a crucial role in this project’s

success…so much so that I believe my efforts alone resulted in the initial satisfaction of three of

our established outcomes. With the ultimate success of our project, less one outcome which was

quite frankly added at the last minute, I feel that I should receive an A in ECE 477.

 A-5

ECE 477 Final Report Spring 2004

Appendix B: Packaging

Figure B-1: Front View of initial DiPFI packaging concept

Figure B-2: Back View of initial DiPFI packaging concept

 B-1

ECE 477 Final Report Spring 2004

Figure B-3: Front and Top View of final DiPFI packaging

Figure B-4: Back View of final DiPFI packaging

Dimensions: 8.7 (l) x 7.7 (w) x 2.5 (h) (inches)
 22 x 19.5 x 6.35 (centimeters)

 B-2

ECE 477 Final Report Spring 2004

Appendix C: Schematic

Figure C-1. OrCAD Schematic of DiPFI.

 C-1

ECE 477 Final Report Spring 2004

Appendix D: PCB Layout Top and Bottom Copper

Figure D-1. PCB Layout Top Copper.

 D-1

ECE 477 Final Report Spring 2004

Figure D-2. PCB Layout Bottom Copper.

 D-2

ECE 477 Final Report Spring 2004

Appendix E: Parts List Spreadsheet
DiPFI Component List
Vendor Part Description Part Number Unit Cost Quantity Total Cost
Arrow Electronics, Inc. Epson Graphics Controller S1D13505F00A100 $14.40 4 $57.60
G-Link Technology 256Kx16 4MB EDO DRAM GLT440L16 $3.00 3 $9.00
Digi-Key Rabbit 3000 Core Module 316-1018-ND $83.21 1 $83.21
Rabbit Semiconductor Rabbit 3010 Core Module 101-0507 $59.00 2 $118.00
Digi-Key Ferrite Beads P9820BK-ND $0.127 10 $1.27
Digi-Key 47 uF Caps 493-2086-1-ND $0.178 5 $0.89
Digi-Key Epson 25.175 MHz Clock SE2838CT-ND $4.38 2 $8.76
Digi-Key 0.1 uF Caps 493-2208-1-ND $0.158 10 $1.58
Reynolds Electronics Sony IR Decoder IR-D14 IC $8.000 1 $8.00
Arrow Electronics, Inc. Sharp 40 kHz IR Receiver GP1UD28YK $0.750 3 $2.25
 Caps Sampled 20 $0.00
 Resistors Sampled 20 $0.00
Radio Shack 1500 mA 9V AC Adapter $22.000 1 $22.00
Texas Instruments 500 mA LDO Volt. Regs. REG 103-33/5 Sampled 25 $0.00
Texas Instruments 1 A LDO Volt. Regs. TPS76750-33/5 Sampled 10 $0.00
Fairchild Semiconductor High Conductance Ultra Fast Diode BAV99 Sampled 6 $0.00
Fairchild Semiconductor NPN General Purpose Amplifier MMBT2222 Sampled 3 $0.00
 15 Pin Female VGA Connector Sampled 2 $0.00
 Headers Sampled 8 $0.00
 Pushbuttons Sampled 6 $0.00
 LEDs Sampled 4 $0.00
 Sony IR Remote Sampled 1 $0.00
Digi-Key Atmel 22v10 PLDs ATF22LV10CQZ $5.38 7 $37.66
 PCB $33.00 1 $33.00
 Plexi-glass Sheet $12.00 1 $12.00
 Poxy Glue $6.00 1 $6.00
 RJ-45 Female to Female Connector $5.00 1 $5.00
 Sand paper $2.00 1 $2.00

 TOTAL $408.22

 E-1

ECE 477 Final Report Spring 2004

Appendix F: Software Listing

/***
 Custom TCP/IP Server Implemented on the Rabbit 3000 microcontroller
 that waits for incoming picture data, and forwards the data to the
 EPSON graphics controller.

 By: Phillip Boone, Jeff Turkstra
***/
#class auto

// Enable DHCP autoconfiguration on the network port
//#define TCPCONFIG 5

// Enable following lines to set STATIC IP
#define TCPCONFIG 1
#define _PRIMARY_STATIC_IP "192.168.1.101"
#define _PRIMARY_NETMASK "255.255.255.0"
#define MY_NAMESERVER "192.168.1.1"
#define MY_GATEWAY "192.168.1.1"

#define TIMEZONE -8

// Server listens on this port
#define PORT1 39
#define SOCK_BUF_SIZE 4096
#define MAX_BUFSIZE 128 // Blocksize of packets to read in
#define MAX_BUFFER 8191 // Temporary buffer of incoming packets
#define CH_ESCAPE 27
#define SAMPLES 3

#memmap xmem
#use "dcrtcp.lib" // Always pull in FS MkII.

// Temporary Address and Color data
typedef unsigned char S1D_INDEX;
typedef unsigned char S1D_VALUE;

typedef struct
{
 S1D_INDEX Index;
 S1D_VALUE Value;
} S1D_REGS;

// Initialiaztion data for the Epson's Registers
static S1D_REGS aS1DRegs[] =
{
 {0x1B,0x00}, // Miscellaneous Register
 {0x23,0x3B}, // Performance Enhancement Register 1
 {0x01,0x30}, // Memory Configuration Register - 0x20?
 {0x22,0x24}, // Performance Enhancement Register 0
 {0x02,0x26}, // Panel Type Register
 {0x03,0x00}, // MOD Rate Register
 {0x04,0x4F}, // Horizontal Display Width Register

 F-1

ECE 477 Final Report Spring 2004

 {0x05,0x13}, // Horizontal Non-Display Period Register
 {0x06,0x01}, // HRTC/FPLINE Start Position Register
 {0x07,0x0B}, // HRTC/FPLINE Pulse Width Register
 {0x08,0xDF}, // Vertical Display Height Register 0
 {0x09,0x01}, // Vertical Display Height Register 1
 {0x0A,0x2B}, // Vertical Non-Display Period Register
 {0x0B,0x09}, // VRTC/FPFRAME Start Position Register
 {0x0C,0x01}, // VRTC/FPFRAME Pulse Width Register
 {0x0E,0xFF}, // Screen 1 Line Compare Register 0
 {0x0F,0x03}, // Screen 1 Line Compare Register 1
 {0x10,0x00}, // Screen 1 Display Start Address Register 0
 {0x11,0x00}, // Screen 1 Display Start Address Register 1
 {0x12,0x00}, // Screen 1 Display Start Address Register 2
 {0x13,0x00}, // Screen 2 Display Start Address Register 0
 {0x14,0x00}, // Screen 2 Display Start Address Register 1
 {0x15,0x00}, // Screen 2 Display Start Address Register 2
 {0x16,0x80}, // Memory Address Offset Register 0
 {0x17,0x02}, // Memory Address Offset Register 1
 {0x18,0x00}, // Pixel Panning Register
 {0x19,0x00}, // Clock Configuration Register
 {0x1A,0x00}, // Power Save Configuration Register
 {0x1C,0x00}, // MD Configuration Readback Register 0
 {0x1E,0x00}, // General IO Pins Configuration Register 0
 {0x1F,0x00}, // General IO Pins Configuration Register 1
 {0x20,0x00}, // General IO Pins Control Register 0
 {0x21,0x00}, // General IO Pins Control Register 1
 {0x23,0x3B}, // Performance Enhancement Register 1
 {0x0D,0x12}, // Display Mode Register
};

static tcp_Socket sock1;
// IR Temporary Status
int PE0[2];
int PE1[2];
int PE3[2];
int PE4[2];

// Switch Debouncing Temp. variables
int PA0[SAMPLES + 1];
int PA1[SAMPLES + 1];
int PA2[SAMPLES + 1];
int PA3[SAMPLES + 1];

// Indices for the temp. arrays
int button;
int stable;
int ir;

// Temporary buffer to store data copies directly from the network socket
char buf1[MAX_BUFSIZE];
char indata[MAX_BUFFER];
int i_prod;
int i_cons;

// Address to clock into the EPSON

 F-2

ECE 477 Final Report Spring 2004

unsigned long total_size;
// 16 bit Color Value to clock in to the Epson
int pixeldata;
int activeled;

void led();

void clockit() { // routine to clock the LED's
 BitWrPortI(PBDR, &PBDRShadow, 1, 0);
 BitWrPortI(PBDR, &PBDRShadow, 0, 0);
 return;
}

void setmode(int b0, int b1) { // configure the PLD's mode
 BitWrPortI(PDDR, &PDDRShadow, b0, 5);
 BitWrPortI(PDDR, &PDDRShadow, b1, 4);
 return;
}

// Load the Address into the PLDs
void loadaddy(long address) {
 setmode(0,1);
 // (Epson must have WORD-ALIGNED addresses!
 WrPortI(PFDR, &PFDRShadow, (address & 0xFE)); // lower 8 bits of address
 WrPortI(PGDR, &PGDRShadow, ((address & 0x7FF) >> 8)); // bits 8-10
 clockit();
 setmode(1,0);
 WrPortI(PFDR, &PFDRShadow, ((address & 0x07F000) >> 11)); // bits 12-18
 WrPortI(PGDR, &PGDRShadow, (((address & 0x7FFFFF) >> 19) +
 ((address & 0x800) >> 9))); // bits 19-20 & 11
 clockit();
 return;
}

// Put the Epson in the proper mode
void epsonmod(int mode) {
 /* 0 = read registers
 1 = write registers
 2 = read data
 3 = write data */
 if (mode == 0) {
 BitWrPortI(PEDR, &PEDRShadow, 0, 5);
 BitWrPortI(PEDR, &PEDRShadow, 0, 6);
 BitWrPortI(PEDR, &PEDRShadow, 0, 7);
 }
 else if (mode == 1) {
 BitWrPortI(PEDR, &PEDRShadow, 1, 5);
 BitWrPortI(PEDR, &PEDRShadow, 0, 6);
 BitWrPortI(PEDR, &PEDRShadow, 0, 7);
 }
 else if (mode == 2) {
 BitWrPortI(PEDR, &PEDRShadow, 0, 5);
 BitWrPortI(PEDR, &PEDRShadow, 1, 6);
 BitWrPortI(PEDR, &PEDRShadow, 0, 7);
 }
 else if (mode == 3) {

 F-3

ECE 477 Final Report Spring 2004

 BitWrPortI(PEDR, &PEDRShadow, 1, 5);
 BitWrPortI(PEDR, &PEDRShadow, 1, 6);
 BitWrPortI(PEDR, &PEDRShadow, 0, 7);
 }
 return;
}

// Write a byte "value" into the epson at "address"
void writeregbyte(unsigned long address, int value) {
 int i,j,orig;
 loadaddy(address);
 orig = readregcur();
 if ((address & 0x01) == 0) { // even address
 WrPortI(PFDR, &PFDRShadow, (value & 0xFF)); // load F
 WrPortI(PGDR, &PGDRShadow, (orig & 0xFF00) >> 8); // load G
 }
 else {
 WrPortI(PFDR, &PFDRShadow, (orig & 0xFF));
 WrPortI(PGDR, &PGDRShadow, (value & 0xFF));
 }
 epsonmod(1);
 BitWrPortI(PBDR, &PBDRShadow, 0, 3); // enable ChipSelect (activelow)
 while (BitRdPortI(PCDR, 5) == 0) ; // busy wait until epson done
 BitWrPortI(PBDR, &PBDRShadow, 1, 3); // disable ChipSelect
 return;
}

int readregcur() { // read a word from the address currently latched in PLD's
 int j, v1, v2;
 WrPortI(PFDDR, &PFDDRShadow, 0x00); // set ports f,g to input
 WrPortI(PGDDR, &PGDDRShadow, 0x00);
 epsonmod(0);
 BitWrPortI(PBDR, &PBDRShadow, 0, 3); // enable chipselect
 v1 = RdPortI (PFDR);
 v2 = RdPortI (PGDR);
 BitWrPortI(PBDR, &PBDRShadow, 1, 3); // shutdown epson
 epsonmod(1); // well, anything that's input to avoid bus fighting
 WrPortI (PFDDR, &PFDDRShadow, 0xFF); // Ports F & G are output only
 WrPortI (PGDDR, &PGDDRShadow, 0xFF);
 v1 = v1 & 0xFF; // bit masking to build the correct value
 v2 = v2 << 8;
 v1 = v1 + v2;
 return v1;
}

void readreg(unsigned long address) {
 int j, v1, v2;
 loadaddy(address);
 WrPortI (PFDDR, &PFDDRShadow, 0x00); // set ports F & G to input
 WrPortI (PGDDR, &PGDDRShadow, 0x00);
 epsonmod(0); // epson = out
 BitWrPortI(PBDR, &PBDRShadow, 0, 3); // enable chipselect
 v1 = RdPortI(PFDR);
 v2 = RdPortI(PGDR);
 BitWrPortI(PBDR, &PBDRShadow, 1, 3); // shutdown epson
 printf("0x%x: ", (address & 0x1FFFFE)); // output data to screen

 F-4

ECE 477 Final Report Spring 2004

 printf("0x%x\n", v1);
 printf("0x%x: ", (address | 0x01));
 printf("0x%x\n", v2);
 epsonmod(1); // well, anything that's input to avoid bus fighting
 WrPortI (PFDDR, &PFDDRShadow, 0xFF); // Ports F & G are output only
 WrPortI (PGDDR, &PGDDRShadow, 0xFF);
 return;
}

// Write a 16 bit color "value" into the Epsons frame buffer at "address"
void writedat(unsigned long address, int value) {
 // this routine has no protection against non-word aligned
 // addresses. It assumes that calls to it always provide a
 // word-aligned (even-numbered) address, and a 16-bit value
 // lower 8-bits correspond to data written to address
 // upper 8 correspond to data written to address+1
 loadaddy(address);
 WrPortI(PFDR, &PFDRShadow, (value & 0xFF)); // load F
 WrPortI(PGDR, &PGDRShadow, ((value & 0xFF00) >> 8)); // load G
 epsonmod(3);
 BitWrPortI(PBDR, &PBDRShadow, 0, 3); // enable ChipSelect (activelow)
 while (BitRdPortI(PCDR, 5) == 0) ; // busy wait until epson done
 BitWrPortI(PBDR, &PBDRShadow, 1, 3); // disable ChipSelect
 return;
}

// Read a 16 bit color value from the Epsons Frame buffer
void readdat(unsigned long address) {
 // read 16-bits from DRAM space
 int j, v1, v2;
 loadaddy(address);
 WrPortI (PFDDR, &PFDDRShadow, 0x00); // Ports f,g input
 WrPortI (PGDDR, &PGDDRShadow, 0x00);
 epsonmod(2); // epson = out
 BitWrPortI(PBDR, &PBDRShadow, 0, 3); // enable chipselect
 v1 = RdPortI(PFDR);
 v2 = RdPortI(PGDR);
 BitWrPortI(PBDR, &PBDRShadow, 1, 3); // shutdown epson
 printf("0x%x: ", (address & 0x1FFFFE));
 printf("0x%x\n", v1);
 printf("0x%x: ", (address | 0x01));
 printf("0x%x\n", v2);
 epsonmod(1); // well, anything that's input to avoid bus fighting
 WrPortI (PFDDR, &PFDDRShadow, 0xFF); // Ports F & G are output only
 WrPortI (PGDDR, &PGDDRShadow, 0xFF);
 return;
}

// This module just takes the data stored in the buffer indata
// and if it has an entire pixel packet, it clocks the pixel
// into the frame buffer of the Epson
cofunc int decodePCdata(tcp_Socket *s, int port)
{
 auto int i;
 char integer1[4];

 F-5

ECE 477 Final Report Spring 2004

 if(sock_established(s))
 {
 i = 0;
 while(i < 4)
 {
 while(i_cons == i_prod) yield;
 integer1[i] = indata[i_cons];
 i++;
 i_cons = (i_cons + 1) % MAX_BUFFER;
 }

 total_size = *((unsigned long *) integer1);
 //printf("Address: %lu", total_size);

 i = 0;
 while(i < 2)
 {
 while(i_cons == i_prod) yield;
 integer1[i] = indata[i_cons];
 i++;
 i_cons = (i_cons + 1) % MAX_BUFFER;
 }

 pixeldata = *((int *) integer1);
 //printf(" Pixeldata: %x\n", pixeldata);

 led();
 writedat(total_size, pixeldata);
 }

 return 1;
}

// This modules listens to the ethernet port until there is a
// connection. Once connected, it repeatedly drops all network
// data into the circular buffer indata.
cofunc int incoming_tcp(tcp_Socket *s, int port, char *buf)
{
 auto int length, space_available, ready, established, i;

 tcp_listen(s, port, 0, 0, NULL, 0);

 while((-1 == sock_bytesready(s)) && (0 == sock_established(s)))
 {
 if(tcp_tick(s))
 yield;
 else
 abort;
 }

 while(sock_established(s))
 {
 space_available = sock_tbleft(s);

 if(space_available > (MAX_BUFSIZE-1))
 space_available = (MAX_BUFSIZE-1);

 F-6

ECE 477 Final Report Spring 2004

 length = sock_fastread(s, buf, space_available);

 if(length > 0)
 {
 // PACKET DATA NOW STORED IN buf
 // BEGIN PROCESSING HERE

 // Place data in circular buffer
 for(i = 0; i < length; i++)
 {
 // Wait until buffer has enough space
 while(i_cons == (i_prod + 1) % MAX_BUFFER)
 yield;

 //printf("Producing %c i_cons: %d i_prod: %d\n", buf[i], i_cons, i_prod);
 indata[i_prod] = buf[i];
 i_prod = (i_prod + 1) % MAX_BUFFER;
 }
 }
 yield;
 }
 sock_close(s);
 return 1;
}

// This module checks for changes in the bits on input ports PE0, PE1,
// PE3, and PE4. If there is a change(an IR button was pressed), then
// send the corresponding command to the PC via network.
cofunc int monitor_ir(tcp_Socket *s, int port)
{
 auto int len, prev;

 prev = ir;

 // sample IR input polling
 ir = (ir + 1) % 2;

 PE0[ir] = BitRdPortI(PEDR, 0);
 PE1[ir] = BitRdPortI(PEDR, 1);
 PE3[ir] = BitRdPortI(PEDR, 3);
 PE4[ir] = BitRdPortI(PEDR, 4);

 if((PE0[ir] ^ PE0[prev]) == 1)
 {
 printf("IR PE0 pressed...\n");

 if(sock_established(s))
 {
 // NOT USED
 //sock_fastwrite(s, "Recv\n", 5);
 }
 }

 if((PE1[ir] ^ PE1[prev]) == 1)
 {

 F-7

ECE 477 Final Report Spring 2004

 printf("IR PE1 pressed...\n");
 if(sock_established(s))
 sock_fastwrite(s, "Function\n", 9);
 }

 if((PE3[ir] ^ PE3[prev]) == 1)
 {
 printf("IR PE3 pressed...\n");
 if(sock_established(s))
 sock_fastwrite(s, "Previous Picture\n", 17);
 }

 if((PE4[ir] ^ PE4[prev]) == 1)
 {
 printf("IR PE4 pressed...\n");
 if(sock_established(s))
 sock_fastwrite(s, "Next Picture\n", 13);
 }

 return 1;
}

// This module debounces the switches attached to ports PA2 through PA3.
// If a switch is pressed, then it sends the corresponding command to
// the PC via network.
cofunc int monitor_buttons(tcp_Socket *s, int port)
{
 auto int prev, prev1;

 while(DelayMs(50) == 0)
 yield;

 prev = (button + 1) % SAMPLES;
 prev1 = (button + 1) %SAMPLES;

 PA0[button] = BitRdPortI(PADR, 0);
 PA1[button] = BitRdPortI(PADR, 1);
 PA2[button] = BitRdPortI(PADR, 2);
 PA3[button] = BitRdPortI(PADR, 3);

 if((PA0[button] == PA0[prev]) && (PA0[prev] == PA0[prev1]))
 {
 if(PA0[SAMPLES] != PA0[button])
 {
 PA0[SAMPLES] = PA0[button];
 if(PA0[SAMPLES] == 1)
 {
 printf("PA0 Pressed\n");
 if(sock_established(s))
 {
 // NOT USED
 //sock_fastwrite(s, "Recv\n", 5);
 }
 }
 }
 }

 F-8

ECE 477 Final Report Spring 2004

 if((PA1[button] == PA1[prev]) && (PA1[prev] == PA1[prev1]))
 {
 if(PA1[SAMPLES] != PA1[button])
 {
 PA1[SAMPLES] = PA1[button];
 if(PA1[SAMPLES] == 1)
 {
 printf("PA1 Pressed\n");
 if(sock_established(s))
 sock_fastwrite(s, "Function\n", 9);
 }
 }
 }

 if((PA2[button] == PA2[prev]) && (PA2[prev] == PA2[prev1]))
 {
 if(PA2[SAMPLES] != PA2[button])
 {
 PA2[SAMPLES] = PA2[button];
 if(PA2[SAMPLES] == 1)
 {
 printf("PA2 Pressed\n");
 if(sock_established(s))
 sock_fastwrite(s, "Previous Picture\n", 17);
 }
 }
 }

 if((PA3[button] == PA3[prev]) && (PA3[prev] == PA3[prev1]))
 {
 if(PA3[SAMPLES] != PA3[button])
 {
 PA3[SAMPLES] = PA3[button];
 if(PA3[SAMPLES] == 1)
 {
 printf("PA3 Pressed\n");
 if(sock_established(s))
 sock_fastwrite(s, "Next Picture\n", 13);
 }
 }
 }

 // sample button input polling counter
 button = (button + 1) % SAMPLES;

 return 1;
}

void led() {
 // utility to toggle the output led's (helps tell where we are in code
 // execution).
 if (activeled == 1) {
 BitWrPortI (PCDR, &PCDRShadow, 1, 0);
 BitWrPortI (PCDR, &PCDRShadow, 0, 2);
 activeled = 0;

 F-9

ECE 477 Final Report Spring 2004

 }
 else {
 BitWrPortI (PCDR, &PCDRShadow, 0, 0);
 BitWrPortI (PCDR, &PCDRShadow, 1, 2);
 activeled = 1;
 }
 return;
}

// Perform initialization, and enter into Round Robin process loop
void main()
{
 int index, ftpUserID;
 int rc;
 int i,j,k;
 unsigned char cval;
 unsigned long pMem, pTmp;

 ir = 0; // Counter for IR sampling
 button = 0; // Counter for button sampling
 i_prod = i_cons = 0; // Indexes of buffered data

 // init rabbit pins
 cval = RdPortI(PEDDR);
 WrPortI (PEDDR, &PEDDRShadow, (cval | 0xE0) & 0xF0); // init Port E pins (upper 3 output)
 cval = RdPortI(PBDDR);
 WrPortI (PBDDR, &PBDDRShadow, cval | 0x0D); // use pins 0,2,3
 cval = RdPortI(PDDDR);
 WrPortI (PDDDR, &PDDDRShadow, cval | 0x30); // mode select (only use bits 4&5)
 WrPortI (SPCR, &SPCRShadow, 0x80);
 WrPortI (PFDDR, &PFDDRShadow, 0xFF); // Ports F & G are output only
 WrPortI (PGDDR, &PGDDRShadow, 0xFF); // asdf

 BitWrPortI(PBDR, &PBDRShadow, 1, 3); // disable ChipSelect
 BitWrPortI(PBDR, &PBDRShadow, 0, 2); // reset Epson
 BitWrPortI(PBDR, &PBDRShadow, 1, 2);
 activeled = 0;
 led();

 // begin epson initialization sequence
 for (i = 0; i <35; i++) { // cycle through epson config values & load
 led();
 writeregbyte(aS1DRegs[i].Index,aS1DRegs[i].Value);
 }
 for (i = 0; i <36; i += 2) {
 led();
 readreg(i);
 }

 sock_init();
 printf("setup complete.\n");

 while (1)
 {
 costate
 {

 F-10

ECE 477 Final Report Spring 2004

 //printf("Incoming TCP\n");
 wfd incoming_tcp(&sock1, PORT1, buf1);
 }

 costate
 {
 //printf("Monitor IR\n");
 wfd monitor_ir(&sock1, PORT1);
 }

 costate
 {
 //printf("Monitor Buttons\n");
 wfd monitor_buttons(&sock1, PORT1);
 }

 costate
 {
 //printf("Decode PC Data\n");
 wfd decodePCdata(&sock1, PORT1);
 }

 costate
 {
 //printf("Tick\n");
 tcp_tick(NULL);
 }
 }
}

/***
 Custom TCP/IP Client that can compile on any Linux machine
 that scans the local directory for .ppm picture files, and
 waits for control commands from the Rabbit so that it can
 send picture data packets.

 By: Phillip Boone
***/
#include <stdio.h>
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/dir.h>
#include <sys/param.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <netdb.h>
#include <errno.h>
#include <poll.h>
#define MAXPACKET 1024

#define FALSE 0

 F-11

ECE 477 Final Report Spring 2004

#define TRUE !FALSE

/* prototype std lib functions */
extern int alphasort();

/* variable to store current path */
char pathname[MAXPATHLEN];

/* Wrapper function that connects to a TCP server with
 IPv4 address IP_ADDR. If a domain name is given the
 name is automatically resolved to an IPv4 address. The
 file descriptor once connected is returned otherwise
 -1 is returned on error */
int Connect(char *IP_ADDR, int port_num)
{
 struct sockaddr_in ipaddr1;
 struct hostent *resolved;
 struct in_addr *temp1;
 int sockfd, error1;
 char IP1[INET_ADDRSTRLEN];
 char **res;

 bzero(&ipaddr1, sizeof(ipaddr1));

 ipaddr1.sin_family = AF_INET;
 ipaddr1.sin_port = htons(port_num);

 if(inet_pton(AF_INET, IP_ADDR, &ipaddr1.sin_addr) <= 0)
 {
 if((resolved = gethostbyname(IP_ADDR)) != NULL)
 {
 res = resolved->h_addr_list;

 if(inet_ntop(resolved->h_addrtype, *res, IP1, sizeof(IP1)) == NULL)
 return -1;

 temp1 = (struct in_addr *)*res;

 ipaddr1.sin_addr.s_addr = temp1->s_addr;
 }
 else
 {
 return -1;
 }
 }

 if((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
 {
 return -1;
 }

 inet_ntop(AF_INET, &ipaddr1.sin_addr, IP1, sizeof(IP1));
 if(IP1 == NULL)
 {
 return -1;
 }

 F-12

ECE 477 Final Report Spring 2004

 if((error1 = connect(sockfd, (struct sockaddr *)&ipaddr1, sizeof(ipaddr1))) != 0)
 {
 fprintf(stderr,"Unable to connect to %s\n", IP_ADDR);
 return -1;
 }

 return sockfd;
}

/* Reads S_Buff nuMBer of bytes from socket Fd and stores
 them in Buff. */
int Read(int Fd, void *Buff, int S_Buff)
{
 int byte_num, byte_read;
 char *ptr;

 byte_num = S_Buff;
 ptr = Buff;

 while(byte_num > 0)
 {
 if((byte_read = read(Fd, ptr, byte_num)) < 0)
 {
 if(errno == EINTR)
 byte_read = 0;
 else
 {
 fprintf(stderr, "Error Reading socket\n");
 return S_Buff - byte_num;
 }
 }
 else if(byte_read == 0) break;

 byte_num -= byte_read;
 ptr += byte_read;
 }

 return S_Buff - byte_num;
}

/* Writes S_Buff nuMBer of bytes to socket Fd
 from buffer Buff. */
int Write(int Fd, void *Buff, int S_Buff)
{
 int byte_num, byte_wrote;
 char *ptr;

 byte_num = S_Buff;
 ptr = Buff;

 while(byte_num > 0)
 {
 if((byte_wrote = write(Fd, ptr, byte_num)) < 0)
 {
 if(errno == EINTR)

 F-13

ECE 477 Final Report Spring 2004

 byte_wrote = 0;
 else
 {
 fprintf(stderr, "Error Reading socket\n");
 return S_Buff - byte_num;
 }
 }
 else if(byte_wrote == 0) break;

 byte_num -= byte_wrote;
 ptr += byte_wrote;
 }

 return S_Buff - byte_num;
}

// Takes in command line arguments IP Address and Port, connects via
// Ethernet, and waits for command data from the Storage Box.
int main(int argc, char *argv[])
{
 int sockfd, count, i, j, k, pic_sent, pdes[2];
 short Dlen;
 FILE *file1;
 char Buff1[MAXPACKET], temp, command[25], filename[256];
 struct direct **files;
 int file_select();
 struct pollfd Monitor;

 // .ppm Picture Information
 int width;
 int height;
 int quantLevels;
 char asdf[100];
 unsigned char pix1,pix2,pix3;

 // Final Processed pixel data for the Epson on the Storage Box
 unsigned int address;
 short value;

 if(argc != 3)
 {
 fprintf(stderr, "Usage: %s <IP Address> <Port>\n", argv[0]);
 exit(1);
 }

 printf("Connecting to %s\n", argv[1]);

 printf("Port NuMBer is: %i\n", atoi(argv[2]));

 sockfd = Connect(argv[1], atoi(argv[2]));

 if(sockfd == -1)
 {
 printf("Unable to connect\n");
 exit(1);
 }

 F-14

ECE 477 Final Report Spring 2004

 if(getwd(pathname) == NULL)
 {
 printf("Error getting path\n");
 exit(1);
 }
 printf("Current Working Directory = %s\n",pathname);

 // NuMBer of .ppm files found
 count = scandir(pathname, &files, file_select, alphasort);

 /* If no files found, make a non-selectable menu item */
 if (count <= 0)
 {
 printf("No files in this directory\n");
 exit(0);
 }

 printf("NuMBer of .ppm files = %d\n",count);

 for (i=1;i<count+1;++i)
 { printf("%s ",files[i-1]->d_name);
 if ((i % 4) == 0) printf("\n");
 }

 printf("\n"); /* flush buffer */

 // CONNECTED, START CODE

 // Monitor socket for incoming data
 Monitor.fd = sockfd;
 Monitor.events = POLLIN;

 // Open a communication pipe between parent/child
 pipe(pdes);

 i = 0;
 j = 0;

 if(fork() != 0)
 {
 close(pdes[0]); // Use pdes[1] to write to child

 while(Read(sockfd, &command[i], 1) == 1)
 {
 if(command[i] == '\n')
 {
 command[i+1] = '\0';
 write(pdes[1], command, i+1);
 i = 0;
 }
 else
 i++;
 }
 }
 else

 F-15

ECE 477 Final Report Spring 2004

 {
 close(pdes[1]); // Use pdes[0] to read from parent

 i = 0;
 pic_sent = 0;

 while(1)
 {
 // Busy wait
 while(!read(pdes[0], &command[i], 1));

 printf("%c", command[i]);

 if(command[i] == '\n')
 {
 printf("\n");
 command[i+1] = '\0';
 i = 0;

 if(strcmp(command, "Next Picture\n") == 0)
 {
 j = (j + 1) % count;
 printf("#### Selecting File %s ####\n", files[j]->d_name);
 }

 if(strcmp(command, "Previous Picture\n") == 0)
 {
 j--;
 if(j == -1) j = count - 1;
 printf("#### Selecting File %s ####\n", files[j]->d_name);
 }

 if(strcmp(command, "Recv\n") == 0)
 {
 if(read(pdes[0], &pic_sent, 4) != 4)
 {
 printf("ERROR: Unable to Receive length\n");
 exit(1);
 }

 // GET NULL TERMINATED FILE NAME
 k = 0;
 if(pic_sent > 0)
 {
 do
 {
 while(!read(pdes[0], &command[0], 1));

 filename[k] = command[0];
 k++;
 pic_sent--;
 } while(command[0] != '\0');
 }

 file1 = NULL;

 F-16

ECE 477 Final Report Spring 2004

 if(pic_sent > 0)
 {
 printf("######## File %s of size %i ########\n", filename, pic_sent);
 printf("Storing new file to %s...\n", strcat(filename, ".rab"));
 file1 = fopen(filename, "w");
 }

 while(pic_sent)
 {
 while(!read(pdes[0], &command[0], 1));
 //printf("%c", command[0]);
 fputc(command[0], file1);
 pic_sent--;
 }

 if(file1 != NULL) fclose(file1);

 pic_sent = 0;

 } // END OF IF RECV

 if(strcmp(command, "Function\n") == 0)
 {
 file1 = fopen(files[j]->d_name, "r");

 printf("#### Sending File %s to the Rabbit ####\n", files[j]->d_name);

 while(fscanf(file1, "#%[^\n]\n", asdf) == 1);

 fscanf(file1, "%[^\n]\n", asdf);
 printf("%s\n", asdf);

 fscanf(file1, "%d %d\n", &width, &height);
 printf("Widght: %i\n", width);
 printf("Height: %i\n", height);

 fscanf(file1, "%d\n", &quantLevels);
 printf("Quant: %i\n", quantLevels);

 address = 0;

 while(!feof(file1))
 {
 pix1 = fgetc(file1);
 pix2 = fgetc(file1);
 pix3 = fgetc(file1);

 // Scale the data from 8 bits to 5 bits
 pix1 = ((pix1*32)/256);
 pix2 = ((pix2*32)/256);
 pix3 = ((pix3*32)/256);

 // Pack the data into one 16 bit color data value
 value = pix3 | (pix2 << 5) | (pix1 << 10);

 if(Write(sockfd, &address, 4) != 4)

 F-17

ECE 477 Final Report Spring 2004

 {
 fprintf(stderr, "Unable to write picture frame packet\n");
 return 0;
 }

 if(Write(sockfd, &value, 2) != 2)
 {
 fprintf(stderr, "Unable to write picture frame packet\n");
 return 0;
 }

 if(poll(&Monitor, 1, 0) < 0)
 printf("Unable to Poll Incoming Ethernet Data\n");

 if(Monitor.revents != 0)
 printf("%i\n", Monitor.revents);

 //printf("Scaled %u: R: %x G: %x B: %x Value: %x\n", address, pix1, pix2, pix3, value);

 // Account for DRAM overlap and the Fact that we have the wrong
 // Size chip. This is not necessary if we had the right DRAM.
 if(address >= 525500) break;

 address++;
 address++;
 } // END WHILE FEOF

 fclose(file1);
 printf("\n\n");
 } // END IF FUNCTION
 } // END IF COMMAND RECEIVED
 else
 i++;
 } // END BIG INFINITE WHILE
 }
 close(sockfd);
 return 0;
}
/* Only select files that end in .ppm, and are not . or .. */
int file_select(struct direct *entry)
{
 char *ptr;
 if((strcmp(entry->d_name, ".") == 0) ||
 (strcmp(entry->d_name, "..") == 0))
 return (FALSE);

 ptr = rindex(entry->d_name, '.');

 if ((ptr != NULL) && (strcmp(ptr, ".ppm") == 0))
 return (TRUE);
 else
 return(FALSE);

 return (TRUE);
}

 F-18

ECE 477 Final Report Spring 2004

Appendix G: User Manual

DiPFI
Digital Picture Frame Interface

“Picture your world.”

User Manual

Contents

Product Description G-2

DiPFI Illustration . G-3

How to Setup your DiPFI G-4

How to Use your DiPFI G-5,6

Troubleshooting Instructions G-7

 G-1

ECE 477 Final Report Spring 2004

Congratulations!!

You have just purchased the latest in digital picture technology. With the Digital Picture Frame

Interface, you have chosen to revivify your old VGA devices, and turn them into highly portable

digital image viewers. The device is simple to use, requiring only a standard Ethernet cable(1)

and a standard 9 Volt power supply for full functionality. Simply attach DiPFI to a VGA

monitor, supply it with an Ethernet connection and power, and you are ready to view any digital

picture(2) stored on your configurable home personal computer.

The device has onboard pushbuttons and status LEDs which allow for a simple and efficient

means for communicating with the display. In addition, DiPFI offers infrared remote

capabilities, which allows you the benefit of controlling the device from across the room using

the volume and channel buttons on any remote using the Sony IR Remote Protocol!!

You may ask, “How does it work?” Just set up your VGA device on a shelf for prominent

display, plug in power and Ethernet to your new picture frame interface and attach DiPFI to the

VGA device. Next, connect to DiPFI using your personal computer and DiPFI is now ready to

let you picture your world for all to see. So sit back, and enjoy your memories.

(1)Not included (2)Works on 640 x 480 JPEG images

 G-2

ECE 477 Final Report Spring 2004

Figure 1. DiPFI Front and Back Views

Dimensions: 8.7 (l) x 7.7(w) x 2.5(h) (inches)
 22 x 19.5 x 6.35 (centimeters)

Component Function

(1) Power Button Used to switch the device on and off.
(2) Next Button Sends the next picture from the PC to the display.
(3) Previous Button Sends the previous picture from the PC to the display.
(4) Function Button Puts the device into and out of slideshow mode.
(5) Ethernet Port RJ-45 port for connecting the Ethernet cable from the PC.
(6) IR Panel Receives signals from the remote control.
(7) Status LEDs These toggle on and off when a picture is being transmitted;

otherwise they stay lit when the device is on.
(8) VGA Connector The display device cable is connected here.(15pin-female)
(9) Power Supply
Input

9V power supply adapter is connected here.

 G-3

ECE 477 Final Report Spring 2004

Product Setup Instructions

Please make sure that the Digital Picture Frame Interface box packaging includes the following

items: picture box unit, 9V power adapter, software installation CD, and RJ-45 Ethernet cable.

1. Place the picture box unit on a flat, level surface preferably near a wall outlet,

 VGA monitor and Ethernet router. Using the supplied Ethernet cable connect

 one end to a spare port on a DCHP compliant router, and connect the other

 end to the Ethernet port on the right side of the picture box unit.

2. Making sure the power is off on the VGA monitor, connect the analog cable

 securely to the VGA connector on the left side of the picture box unit.

3. Finally, connect the AC power adapter to the back of the picture box unit, and

 plug the adapter in the wall outlet.

The unit will automatically power up and wait for requests on the network and from the push

buttons or remote control. The picture box unit is designed to receive automatic configuration

via a DHCP server that is built in to most standard 100/10 Base-T routers.

The infrared detector will work with any standard Sony brand controller. There are four control

buttons that work on the remote: channel up (PWR), channel down (FUNC), volume up

(NEXT), and volume down (PREV). See the “Product Use Instructions” section for a

functionality description.

The software installation CD contains a simple self-extracting compressed file that can be

extracted to any directory on the user’s hard drive. The user should copy all the desired picture

files to this directory before executing the program. The program must have the domain name or

IP address of the Rabbit server in order to connect to the rabbit. In order to connect to the Rabbit

server, execute the PC client program with the IP address as the first argument and the port

nuMBer (39) as the second argument. The Rabbit will now be able to transfer pictures from the

PC to the display device.

 G-4

ECE 477 Final Report Spring 2004

How to use your DiPFI

Now that you have successfully set up your DiPFI the following guidelines should help you

operate it with ease.

Displaying your first Picture :

Press the Next(2) button on top of the box to tell your DiPFI to send the first picture to the VGA

device you connected it to. Within seconds the full picture should be displayed on the screen for

your viewing pleasure. If this is not the case, try using the Power button to switch the device on

and off. If this does not solve the problem, perform the Set-Up instructions again or try some

more troubleshooting steps (Page 7).

Changing the Picture :

The Next(2) and Previous(3) buttons will cycle forwards and backwards through all the picture

files in the DiPFI_PIC folder on your PC, displaying the full picture before recognizing the next

command. Hitting Next or Previous while a picture is loading will not interrupt the current

picture being sent to the display hence holding these buttons down will have the same effect as

pressing them once.

Album Slideshow :

This display mode lets you view all the pictures in your DiPFI_PIC folder without having to hit

next or previous buttons repeatedly which can be tedious. Pushing the Function(4) button once

will continuously cycle through all pictures displaying them for a period of 5 minutes each. To

stop on a certain picture push Previous and to exit this mode and return to the static display push

Function again.

 G-5

ECE 477 Final Report Spring 2004

Remote Control:

With any SONYTM remote, you can control the DiPFI from up to 10m (33 feet) away within line

of sight of the IR Panel. The functions work exactly as described above for the on-device push

buttons. Programming may be required with any other remote protocol to implement the same

functionality.

For Best Use:

 Use this product in a cool and dry area away from direct sunlight.

 Place product on a flat surface with the push buttons and connectors unobstructed;

preferably a place where the Ethernet cable will not obstruct or impede movement.

 The IR panel on the front should be facing the area from which you would like to

remotely control the display and should not be obstructed.

 Do not place objects on top of this device as inner components may be affected.

 Turn off the device when not in use.

 G-6

ECE 477 Final Report Spring 2004

Product Troubleshooting Instructions

Frequently Asked Questions:

1) The PC client software will not connect to the picture box unit. The client returns the

error “Unable to connect to port 39 on xxx.xxx.xxx.xxx” –

 The router must be configured to forward port 39 on the IP address assigned for the picture

box to work over the Internet. Also make sure that the network cable is securely plugged

into the picture box unit.

2) There is nothing displayed on the monitor –

The picture box unit requires that the PC client send it a picture before it can display

anything. Make sure that the PC client successfully connects to the picture box unit.

3) The remote control does not work with the picture box unit –

 Ensure that a Sony Remote Control is used, there are new batteries in the remote and there is

nothing between the remote control transmitter and picture box IR Panel (9).

4) I have a problem not included in this F.A.Q. –

 Feel free to call the Digital Picture Frame Interface technical support nuMBer at 1-800–GO-

DiPFI (800-46-34734) from 9am – 7pm Monday through Saturday.

 Any comments or suggestions are welcome and would be appreciated.

Contact Information:

Product Development Website: http://shay.ecn.purdue.edu/~477grp12/

Email: 477grp12@ecn.purdue.edu

 G-7

ECE 477 Final Report Spring 2004

Appendix H: FMECA Worksheet

Failure

No.
Failure Mode Possible Causes Failure Effects Method of

Detection
Criticality Remarks

Block A: Power Supply
A1 Vcc = 0V Failure of J6 or failure

of U13, U14, U15
(Any component in
Block A fails or an

external short)

No power to U10, therefore
no image displayed at all.

Observation HIGH

A2 Vcc > 5V Failure of
 U13, U14, U15

Unpredictable effects Observation HIGH

A3 Vcc out of
tolerance

C7, C20, C8 High ripple or
Operation at out of spec
voltage; Unpredictable

Observation HIGH Monitor Wall Wart

Block B: User Interface
B1 No response to

pushbuttons
SW2, SW3,
SW4, SW5

No new pictures obtained Observation LOW Limits the users
control method to IR

remote

B2 IR fluctuating
or corrupted

U16, U17 Random pictures displayed
for undetermined periods of

time

Observation HIGH

 H-1

ECE 477 Final Report Spring 2004

Failure
No.

Failure Mode Possible Causes Failure Effects Method of
Detection

Criticality Remarks

Block B: User Interface
B3 One of IR

decoder outputs
 (PE0 - 4) stuck

at 1.

U16,U17 Infinite cycle through
images;

 Observation

Switching on and off
continuously

HIGH

Block C : Physical Connectors
C1 All Outputs 0 U10, J8

 R39,R40,R41,
D5,D6,D7

No pixel data sent out on
VGA connector

Observation HIGH Replace connector

C2 All Outputs 1 U10, J8
 R39,R40,R41,

D5,D6,D7

Wrong data on output
connector;

Unpredictable effects

Observation HIGH

C3 Random
Outputs

U10, J8
 R39,R40,R41,

D5,D6,D7

Unpredictable effects Observation HIGH

Block D: Graphics
D1 Incorrect PLD

outputs
U2, U3, U7 Pixel data sent to the wrong

addresses, corrupted display
Observation HIGH

D2 PLDs Outputs
all 0

U2, U3, U7,
J5, U13

No addressing information
available

Observation HIGH Bad Chip

D3 PLDs Outputs
all 1

U2, U3, U7

Same Address is sent pixel
data and is overwritten each

time

Observation LOW

 H-2

ECE 477 Final Report Spring 2004

Failure
No.

Failure Mode Possible Causes Failure Effects Method of
Detection

Criticality Remarks

D4 EPSON all
Outputs 0

U10, Q1, J20,U13 No meaningful data
buffered in DRAM or sent

to VGA output;
Unpredictable

Observation HIGH User gets incorrect
data from PC.
Product is not
useful. Easily

detected.

D5 EPSON all
Outputs 1

U10, Q1, J20,U13,
C1 – C6,
C11 – 13

No meaningful data
buffered in DRAM or sent

to VGA output;
Unpredictable

Observation HIGH

D6 Clk always high
(1)

U12 EPSON’s communication
and synchronization with
rest of circuit is affected;

 Observation

can’t interface easily

HIGH

Block E : Microcontroller
E1 All outputs 0 Failure in µC ,

U15, J6
NO functionality,
interfacing, image

transferring, No output at all

Observation HIGH Use reset controller

E2 All Outputs 1 Failure in µC Unpredictable Observation HIGH Reset µC
E3 Random outputs S/W problem Unpredictable effects Observation HIGH Use headers to test

S/W

 H-3

ECE 477 Final Report Spring 2004

 H-4

9V Wall Wart, Voltage RegulatorsPower Supply

Rabbit 3000 (Headers)Microcontroller

EPSON, DRAM, PLDs, Crystal OscillatorGraphics

VGA Connector, (RJ-45 on core module)Physical Connectors

Push buttons, IR Decoder and ReceiverUser Interface

9V Wall Wart, Voltage RegulatorsPower Supply

Rabbit 3000 (Headers)Microcontroller

EPSON, DRAM, PLDs, Crystal OscillatorGraphics

VGA Connector, (RJ-45 on core module)Physical Connectors

Push buttons, IR Decoder and ReceiverUser Interface

