Team Gnomes Presents

P38X9-WXZZZ45397ERV.JAS95_MGD

A "Black Box" solution to turning old monitors into digital picture frames

Outline of Presentation

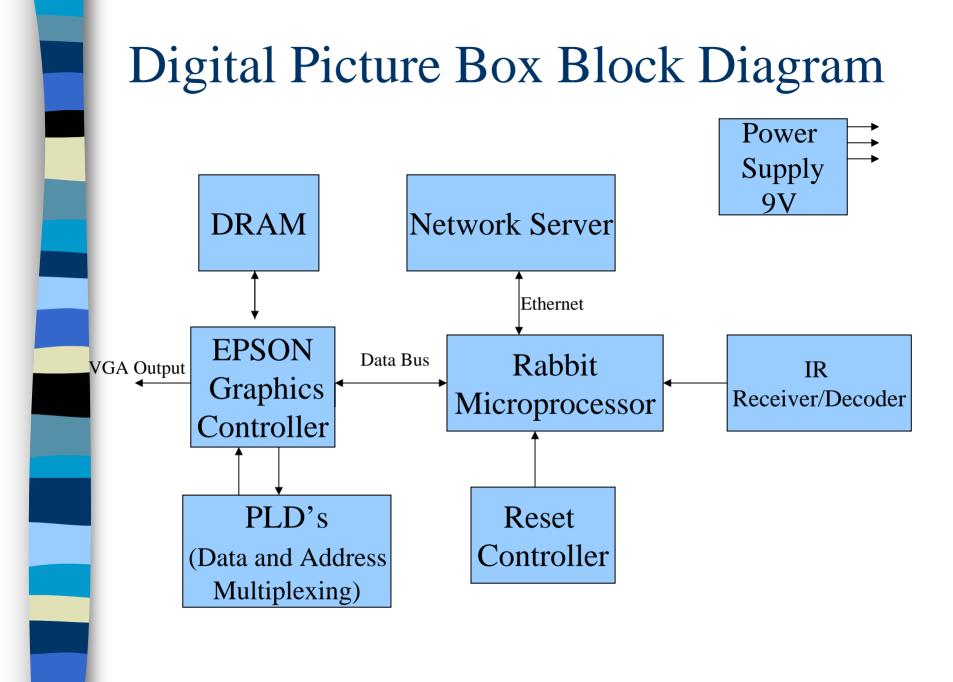
- Team member introduction
- Overview of Project
- Block Diagram
- Major Component Selection
- Packaging Design Specifications
- Circuit Design and Schematic

Introduction

- Egomaron Jegede Rabbit/Packaging specialist
 - CmpE, graduating 5/2004
- Bill Kreider IR specialist
 - EE, graduating 5/2004
- Phil Boone Rabbit specialist
 - CmpE, graduating 5/2004
- Jeff Turkstra Epson specialist and maniacal team leader
 - CmpE, graduating 5/2004

Outline of Presentation

Team member introduction


- Overview of Project
- Block Diagram
- Major Component Selection
- Packaging Design Specifications
- Circuit Design and Schematic

Overview of Presentation

- Image data provided via ethernet from a PC is displayed on a VGA compatible device.
 - Data made available via a client program that decodes the JPEG and takes care of communicating with our device
 - Scales image appropriately
 - Adjusts color depth
 - Ensures proper image format
 - VGA display is done via Epson controller interfacing with a 4MB memory chip.
- IR remote control allows product to be placed in a difficult to reach location
 - Allows one to change the picture with just a push of a button!
 - Accomplished with Reynolds Electronics Sony IR decoder and a Sharp IR receiver.

Outline of Presentation

- Team member introduction
- Overview of Project
- Block Diagram
- Major Component Selection
- Packaging Design Specifications
- Circuit Design and Schematic

Outline of Presentation

- Team member introduction
- Overview of Project
- Block Diagram
- Major Component Selection
- Packaging Design Specifications
- Circuit Design and Schematic

Component Selection Rationale

 Specific Design Constraints Required for the Graphics Chip and Micro Controller

Comparison of Selected
 Chips to Alternatives

Required Functionality of the Graphics Controller

- Ability to create and refresh all the analog RGB signals necessary to display an image independently
- Standard DRAM interface for the frame buffer
- Large enough frame buffer size to hold a standard SVGA image

Contestant #1: Epson Embedded RAMDAC LCD/CRT Controller

- Onboard analog RGB output
- Support for external standard EDO/FPM DRAM chip up to 2 megabytes
- Surface mount with 128 pins
- Detailed 500 page technical manual

Contestant #2: Cirrus Logic System-on-a-chip with CRT/LCD Controller

- Onboard analog RGB output
- Support for external standard EDO/FPM DRAM
- Surface mount with 240 pins
- ISA bus, onboard ARM controller, sound output, and PS/2 serial interface

Which graphics controller better suits the needs of our project?

Cirrus Logic

- 240 pins
- Additional features: ISA bus, ARM controller, etc.
- Poor documentation
- External framebuffer

Epson

128 pins

- 500+ page technical manual including timing diagrams, interfacing examples, etc.
- External framebuffer

Winner? Epson S1D13505

- Additional features of the other chip are not applicable to our project
- Detailed Documentation
- Fewer pins

Required functionality of the Microcontroller

- Large number of I/O pins to communicate with the Epson's huge bus(21-bit address, 16-bit data) and an IR chip
- Enough computability to buffer large amounts of data
- Integrated network adapter
- Efficient development environment

Contestants? No contest.

- Due to the network requirement, a Rabbit controller is ideal
- Need a large model to accommodate the I/O pin demand
- High speed required to buffer large amounts of data
- Modest amount of flash memory and RAM to buffer data

Winner? Rabbit 3010 Core Module(based on Rabbit 3000)

- Total of 52 I/O pins(46 pins required for the Epson alone)
- 256kb of Flash Memory
- 128kb Static RAM
- 29.4 Mhz clock

Outline of Presentation

- Team member introduction
- Overview of Project
- Block Diagram
- Major Component Selection
- Packaging Design Specifications
- Circuit Design and Schematic

Packaging Design

- Design Requirements
- Commercial Product Comparison
- Unique/adapted features
- Weight and Cost Estimate

Packaging Design

- Physical Features
 - RJ-45 network connector
 - 15 pin female VGA connector
 - Power and Busy LED's
 - Push buttons (Next, Previous, Function, Power)
 - Internal electronics :
 - Epson, Rabbit, IR Receiver/Decoder, PLD's
 - Power input
 - Casing

Commercial Product Analysis - #1

- Features
 - Wall mountable
 - Loads pictures via CD ROM or internet via
 Ethernet
 - -Displays JPEG/MPEG-
 - 1 and MP3's
 - Remote control

Digi-Frame DF-1710 WxHxD : 17.83" x 14.5" x 2.9"

Digi-Frame Pros and Cons

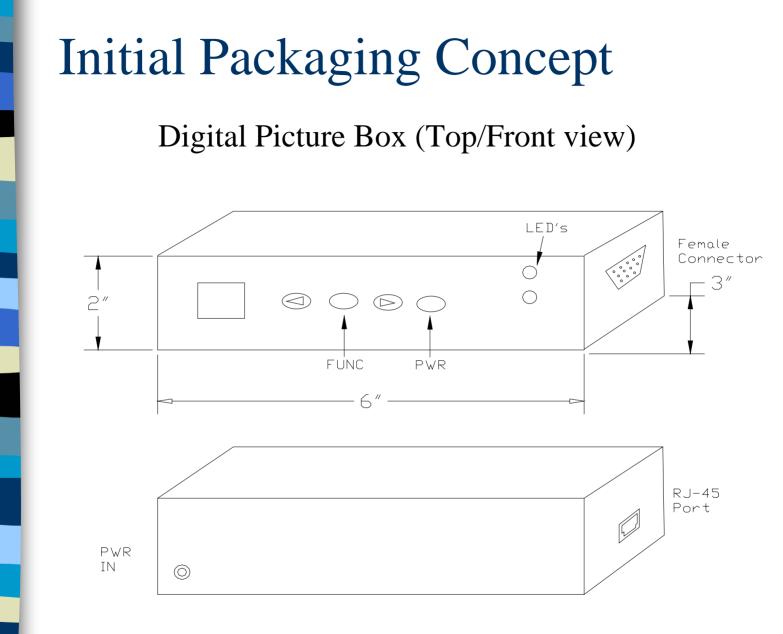
Hidden functionality behind slim frame
Variable mounting (vertical or horizontal)
Large, clear display size (13"x10")

Not portable due to weight (19lbs.)
CD-R0M drive affects mounting

Unique Aspects of the Digital Picture Box Design

- Separates image processing from display allowing great flexibility on choice of display screen and size (Any VGA controlled display screen)
- Small size makes design highly portable and unobtrusive

Commercial Product Analysis - #2



Vosonic Multi-media Viewer – 80 WxHxD : 98 x 89 x 15 mm Weight : 81g

- Features
 - Plays JPEG/MPEG/MP3 file formats
 - Supports various memory cards and has USB driver
 - compatible with Windows and Mac OS
 - Interfaces with NTSC/ Pal TV's or TFT monitors
 - IrDA remote control

Product features we plan to copy/adapt to our design

- Compact light-weight design
- User-friendly button arrangement and labeling
- Arrangement of inputs and outputs allow for easy connection
- Wide front panel for easy IR signal reception

Digital Picture Box – Rear view

Weight and Cost Estimates

Part	Weight (oz/lbs)	Unit Cost (\$)	Quantity	Total Cost (\$)
Epson Graphics Controller	0.2 oz	14.40	2	28.80
EDO DRAM	0.2 oz	Sampled	1	0.00
Rabbit 3000 Core Module	1.0 oz	14.50	2	79.00
Pushbuttons	0.4 oz	0.25	4	1.00
15 pin HD Female connector	2.0 oz	1.00	1	1.00
LED's	-	0.50	2	1.00
Plastic Casing	1.0 oz	10.00	1	10.00
Total Weight	4.8 oz		Total Cost	\$ 120.80

Outline of Presentation

- Team member introduction
- Overview of Project
- Block Diagram
- Major Component Selection
- Packaging Design Specifications
- Circuit Design and Schematic

Power supply considerations

Rabbit 3000 operates at 3.3 VDC

- Can sink and source up to 6.8 mA current
- Input pins are up to 5.5 VDC tolerant
- IR module operates at 5 VDC
 - Requires 4 I/O pins @ < 2 mA operating current per pin

Power supply considerations

- Epson Graphics Controller requires two separate power supplies
 - Analog 3.3 VDC
 - Digital 3.3 VDC
- These must be separated so that digital switching noise does not inject itself, through a common ground, into the analog portion of the circuit. This would be very undesirable and a decrease in VGA display quality would be observed.

Power supply considerations

- Epson Graphics Controller requires two separate power supplies
 - Analog 3.3 VDC
 - Digital 3.3 VDC
- To prevent switching noise from entering the analog circuitry:
 - Two separate power supplies will be used.
 - A ferrite bead will be used to connect the analog to the digital ground at a single, regulated point. The bead will block high-frequency noise.
 - Several 0.1 uF decoupling capacitors will also be used.

Power supply considerations

- To achieve required voltages, a standard unregulated 9 VDC "Wall Wart" will be used along with standard Low-Dropout Voltage Regulators to achieve:
 - 9 V to regulated VL 3.3V digital power
 - 9 V to regulated Analog VL 3.3V analog power
 - 9 V to regulated VL 5V digital power

IR Remote

- Sharp receiver outputs the signal that drives transmitter on a remote control
- Reynolds Electronics Sony IR Remote Decoder takes output from receiver and toggles a data pin corresponding to button presses on the remote. Can recognize buttons 0-9, channel +/-, and volume +/- on any Sony remote.
 - Operates at 5 VDC, but will be compatible with Rabbit I/O pins' 5.5 VDC voltage limit and 6.8 mA current limit

VGA Connector

- Standard VGA connector fed by Epson RGB signals

- Ferrite beads for low-pass filtering
- BAV99 double-diode for surge protection

LED/Pushbuttons

 Only consideration is meeting 6.8 mA Rabbit source/sink limits

Epson Graphics Controller considerations

- 21 bit address bus
- 16 bit data bus
- Direct connection to 256k x 16 EDO RAM chip
- Standard VGA connections
 - RGB outputs RED/GREEN/BLUE
 - Horizontal/Vertical Controls HRTC/VRTC
- Important Control Signals
 - Chip Select CS#
 - Write Enable WE1#/WE0#
 - Reset RESET#
- IREF
 - Requires 4.6 mA current reference supplied by NPN transistor

Other Design Considerations

- 25.175 MHz Crystal Oscillator

- 256k x 16 EDO DRAM
- PLDs
- Reset Controller

Future work

- Prototype major components
- Complete board layout
- Set up network server
- Software Development

? Questions ?

References for Major Components

[1] Rabbit 3000 Core Module

http://shay.ecn.purdue.edu/~477grp12/datasheets/rabbit3000_core_manual.pdf

[2]Epson Graphics Controller

http://shay.ecn.purdue.edu/~477grp12/datasheets/epson_manual.pdf

[3]Low-Dropout Voltage Regulators 3.3V

http://focus.ti.com/lit/ds/symlink/reg103-33.pdf

5V

http://focus.ti.com/lit/ds/symlink/reg103-5.pdf

[4]PLD

26V12

http://www.vantis.com/lit/docs/datasheets/pal_gal/26v12.pdf

16V8

http://www.vantis.com/lit/docs/datasheets/pal_gal/16v8.pdf

References for Major Components

IR

[5] Detector

http://shay.ecn.purdue.edu/~477grp12/datasheets/sharp_ir_detector_d ata.pdf

[6] Decoder

http://shay.ecn.purdue.edu/~477grp12/datasheets/rentron_ir_decoder.p

[7] DRAM

http://www.issi.com/pdf/41xx16256.pdf

[8] Crystal Oscillator

http://www.eea.epson.com/go/Prod_Admin/Categories/EEA/QD/Crystal _Oscillators/all_oscillators/go/Resources/TestC2/SG8002DB