
RabbitCore RCM3000
C-Programmable Module with Ethernet

User’s Manual
019–0110 • 030725–D

Z-World, Inc.

2900 Spafford Street
Davis, California 95616-6800

USA

Telephone: (530) 757-3737
Fax: (530) 757-3792

www.zworld.com

Rabbit Semiconductor

2932 Spafford Street
Davis, California 95616-6800

USA

Telephone: (530) 757-8400
Fax: (530) 757-8402

www.rabbitsemiconductor.com

RabbitCore RCM3000 User’s Manual

Part Number 019-0110 • 030725–D • Printed in U.S.A.

©2002–2003 Z-World Inc. • All rights reserved.

Z-World reserves the right to make changes and
improvements to its products without providing notice.

Trademarks
Rabbit and Rabbit 3000 are registered trademarks of Rabbit Semiconductor.

RabbitCore is a trademark of Rabbit Semiconductor.

Dynamic C is a registered trademark of Z-World Inc.
RabbitCore RCM3000

TABLE OF CONTENTS

Chapter 1. Introduction 1
1.1 RCM3000 Features ...1
1.2 Advantages of the RCM3000 ...2
1.3 Development and Evaluation Tools..2
1.4 How to Use This Manual ..3

1.4.1 Additional Product Information ..3
1.4.2 Online Documentation ..3

Chapter 2. Hardware Reference 5
2.1 RCM3000 Digital Inputs and Outputs ..6

2.1.1 Memory I/O Interface ...11
2.1.2 Other Inputs and Outputs ..11

2.2 Serial Communication ..12
2.2.1 Serial Ports ..12
2.2.2 Ethernet Port ...12
2.2.3 Programming Port ...13

2.2.3.1 Alternate Uses of the Programming Port ... 13
2.3 Other Hardware...14

2.3.1 Clock Doubler ...14
2.3.2 Spectrum Spreader ..14

2.4 Memory...15
2.4.1 SRAM ...15
2.4.2 Flash EPROM ...15
2.4.3 Dynamic C BIOS Source Files ...15

Chapter 3. Software Reference 17
3.1 More About Dynamic C ...17
3.2 Programming Cable ..18

3.2.1 Changing from Program Mode to Run Mode ...18
3.2.2 Changing from Run Mode to Program Mode ...18

3.3 Dynamic C Libraries...19
3.3.1 I/O ...20
3.3.2 Serial Communication Drivers..20
3.3.3 TCP/IP Drivers..20

3.4 Sample Programs ..21
3.5 Upgrading Dynamic C ..22

3.5.1 Upgrades ...22

Appendix A. RabbitCore RCM3000 Specifications 23
A.1 Electrical and Mechanical Characteristics ...24

A.1.1 Headers...27
A.1.2 Physical Mounting ...27

A.2 Bus Loading ...28
A.3 Rabbit 3000 DC Characteristics...31
A.4 I/O Buffer Sourcing and Sinking Limit ...32
A.5 Conformal Coating...33
A.6 Jumper Configurations...34
User’s Manual

Appendix B. Prototyping Board 35
B.1 Mechanical Dimensions and Layout ... 36
B.2 Power Supply... 37
B.3 Using the Prototyping Board ... 38

B.3.1 Adding Other Components .. 39
B.3.2 Measuring Current Draw ... 39
B.3.3 Attach Modules to Prototyping Board ... 40
B.3.4 Other Prototyping Board Modules and Options .. 40

Appendix C. LCD/Keypad Module 41
C.1 Specifications... 41
C.2 Jumper-Selectable Voltage Settings for All Boards .. 43
C.3 Keypad Labeling.. 44
C.4 Header Pinouts... 45

C.4.1 I/O Address Assignments .. 45
C.5 Mounting LCD/Keypad Module on the Prototyping Board.. 46
C.6 Bezel-Mount Installation ... 47

C.6.1 Connect the LCD/Keypad Module to Your Prototyping Board .. 49
C.7 LCD/Keypad Module Function APIs .. 50

C.7.1 LEDs .. 50
C.7.2 LCD Display .. 51
C.7.3 Keypad ... 67

C.8 Sample Programs... 70

Appendix D. Power Supply 71
D.1 Power Supplies .. 71

D.1.1 Battery-Backup Circuits .. 71
D.1.2 Reset Generator ... 72

D.2 Optional +5 V Output.. 72

Appendix E. Programming Cable 73

Appendix F. Motor Control Option 77
F.1 Overview.. 77
F.2 Header J6.. 78
F.3 Using Parallel Port F .. 79

F.3.1 Parallel Port F Registers... 79
F.4 PWM Outputs .. 82
F.5 PWM Registers .. 83
F.6 Quadrature Decoder ... 84

Notice to Users 87

Index 89

Schematics 91
RabbitCore RCM3000

1. INTRODUCTION

The RCM3000 RabbitCore module is designed to be the heart of
embedded control systems. The RCM3000 features an inte-
grated Ethernet port and provides for LAN and Internet-enabled
systems to be built as easily as serial-communication systems.

The RCM3000 has a Rabbit 3000 microprocessor operating at 29.4 MHz, static RAM,
flash memory, two clocks (main oscillator and timekeeping), and the circuitry necessary
for reset and management of battery backup of the Rabbit 3000’s internal real-time clock
and the static RAM. Two 34-pin headers bring out the Rabbit 3000 I/O bus lines, parallel
ports, and serial ports.

The RCM3000 receives its +3.3 V power from the customer-supplied motherboard on
which it is mounted. The RabbitCore RCM3000 can interface with all kinds of CMOS-
compatible digital devices through the motherboard.

1.1 RCM3000 Features

• Small size: 1.85" x 2.65"” x 0.86"

(47 mm × 67 mm × 22 mm)

• Microprocessor: Rabbit 3000 running at 29.4 MHz

• 52 parallel 5 V tolerant I/O lines: 44 configurable for I/O, 4 fixed inputs, 4 fixed outputs

• Two additional digital inputs, two additional digital outputs

• External reset input

• Alternate I/O bus can be configured for 8 data lines and 6 address lines (shared with
parallel I/O lines), I/O read/write

• Ten 8-bit timers (six cascadable) and one 10-bit timer with two match registers

• 256K–512K flash memory, 128K–512K SRAM

• Real-time clock

• Watchdog supervisor

• Provision for customer-supplied backup battery via connections on header J2

• 10Base-T RJ-45 Ethernet port
User’s Manual 1

• 10-bit free-running PWM counter and four width registers

• Two-channel Input Capture can be used to time input signals from various port pins

• Two-channel Quadrature Decoder accepts inputs from external incremental encoder
modules

• Six CMOS-compatible serial ports: maximum asynchronous baud rate of 1.84 Mbps,
maximum synchronous baud rate of 7.35 Mbps. Four ports are configurable as a
clocked serial port (SPI), and two ports are configurable as SDLC/HDLC serial ports.

• Supports 1.15 Mbps IRDA transceiver

Appendix A, “RabbitCore RCM3000 Specifications,” provides detailed specifications for
the RCM3000.

In addition, two different RCM3000 models are available. In addition, the RCM3100
Series RabbitCore modules omit the RCM3000 Series’ Ethernet connectivity, but offer a
much smaller footprint, which is one-half the size of the RCM3000 Series.

1.2 Advantages of the RCM3000

• Fast time to market using a fully engineered, “ready to run” microprocessor core.

• Competitive pricing when compared with the alternative of purchasing and assembling
individual components.

• Easy C-language program development and debugging

• Utility programs for rapid production loading of programs.

• Generous memory size allows large programs with tens of thousands of lines of code,
and substantial data storage.

• Integrated Ethernet port for network connectivity, royalty-free TCP/IP software.

1.3 Development and Evaluation Tools

A complete Development Kit, including a Prototyping Board and Dynamic C develop-
ment software, is available for the RCM3000. The Development Kit puts together the
essentials you need to design an embedded microprocessor-based system rapidly and effi-
ciently.

See the RabbitCore RCM3000 Getting Started Manual for complete information on the
Development Kit.
2 RabbitCore RCM3000

1.4 How to Use This Manual

This user’s manual is intended to give users detailed information on the RCM3000 mod-
ule. It does not contain detailed information on the Dynamic C development environment
or the TCP/IP software support for the integrated Ethernet port. Most users will want more
detailed information on some or all of these topics in order to put the RCM3000 module to
effective use.

1.4.1 Additional Product Information

Introductory information about the RCM3000 and its associated Development Kit and
Prototyping Board will be found in the printed RabbitCore RCM3000 Getting Started
Manual, which is also provided on the accompanying CD-ROM in both HTML and
Adobe PDF format.

We recommend that any users unfamiliar with Z-World products, or those who will be
using the Prototyping Board for initial evaluation and development, begin with at least a
read-through of the Getting Started manual.

In addition to the product-specific information contained in the RabbitCore RCM3000
Getting Started Manual and the RabbitCore RCM3000 User’s Manual (this manual),
several higher level reference manuals are provided in HTML and PDF form on the
accompanying CD-ROM. Advanced users will find these references valuable in develop-
ing systems based on the RCM3000 modules:

• Dynamic C User’s Manual

• Dynamic C Function Reference Manual

• An Introduction to TCP/IP

• Dynamic C TCP/IP User’s Manual

• Rabbit 3000 Microprocessor User’s Manual

1.4.2 Online Documentation

The online documentation is installed along with Dynamic C, and an icon for the docu-
mentation menu is placed on the workstation’s desktop. Double-click this icon to reach the
menu. If the icon is missing, use your browser to find and load default.htm in the docs
folder, found in the Dynamic C installation folder.

The latest versions of all documents are always available for free, unregistered download
from our Web sites as well.
User’s Manual 3

4 RabbitCore RCM3000

2. HARDWARE REFERENCE

Chapter 2 describes the hardware components and principal hardware
subsystems of the RCM3000. Appendix A, “RabbitCore RCM3000
Specifications,” provides complete physical and electrical specifica-
tions.

Figure 1 shows these Rabbit-based subsystems designed into the RCM3000.

Figure 1. RCM3000 Subsystems

��������

��	

����

���
��
���

������
���

���������	
����	

������
����

�������������������	
�������� !�������
"��#������� �����$��"

�������	�	�
�	����
������

%�#��
���#�����
User’s Manual 5

2.1 RCM3000 Digital Inputs and Outputs

The RCM3000 has 52 parallel I/O lines grouped in seven 8-bit ports available on headers
J1 and J2. The 44 bidirectional I/O lines are located on pins PA0–PA7, PB0, PB2–PB7,
PD2–PD7, PE0–PE1, PE3–PE7, PF0–PF7, and PG0–PG7.

Figure 2 shows the RCM3000 RabbitCore series pinouts for headers J1 and J2.

Figure 2. RCM3000 Pinouts

Headers J1 and J2 are standard 2 × 34 headers with a nominal 2 mm pitch. An RJ-45 Ether-
net jack is also included with the RCM3000 series.

The signals labeled PD2, PD3, PD6, and PD7 on header J1 (pins 29–32) and the pins that
are not connected (pins 33–34 on header J1 and pin 33 on header J2) are reserved for
future use on other models in the RCM3000 series.

���	� ���������	
��������������	�
����������
���	�	�������	�
���

������
���
���
���
��	
�
�
�
	
���
��
���
���
���
��
���
��
���
����

���
���
���
��
���
�

�
�
��	
���
���
���
��	
���
���
���
���
����

&�
����
���
���
���
�
�
�
�
���
���
��
��	
���
���

�����
������

����
���
����

��	
��
���
���
�
�
�
�
���
���
���
���
���
�����
�����	
������ ��
���� �!�
���
���

&�

����"#"�$%"�$��&�%&'
6 RabbitCore RCM3000

Figure 3 shows the use of the Rabbit 3000 ports in the RCM3000 series RabbitCore mod-
ules.

Figure 3. Use of Rabbit 3000 Ports

The ports on the Rabbit 3000 microprocessor used in the RCM3000 Series are config-
urable, and so the factory defaults can be reconfigured. Table 1 lists the Rabbit 3000 fac-
tory defaults and the alternate configurations.

������
����

'����	 '����('�����
)����������'���*

'�����

��	(��� ��)
���(���

��	(���)
��(���

���(���

������)
�����)
������
�����	
������

+���"�,
���-� ���

.�������!$���
��#��'���

����-� ��.����

�	
 (��!/�(����0
�!//��� ����

'����.
)������'�����(�.�1��*

'��,� ��,
'���

)������'����	*

��������
'����"�%*&+�&%",-.�/0,

���

���)"���)"����

��)"���)"���

���)"��)"���

'����2
)������'�������1��*

'����� �
	(�
�

��	(���)
���(���

'����2
)�������'����*

���3��45
���� ��
�����

��	(���
User’s Manual 7

Table 1. RCM3000 Pinout Configurations

Pin Pin Name Default Use Alternate Use RCM3000 Use

H
ea

de
r

J1

1 GND

2 STATUS Output (Status) Output

3–10 PA[7:0] Parallel I/O

External data bus
(ID0–ID7)

Slave port data bus
(SD0–SD7)

External Data Bus

11 PF3 Input/Output QD2A

12 PF2 Input/Output QD2B

13 PF1 Input/Output
QD1A

CLKC

14 PF0 Input/Output
QD1B

CLKD

15 PC0 Output TXD

16 PC1 Input RXD

17 PC2 Output TXC

18 PC3 Input RXC

19 PC4 Output TXB

20 PC5 Input RXB

21 PC6 Output TXA Serial Port A
(programming port)22 PC7 Input RXA

23 PG0 Input/Output TCLKF

24 PG1 Input/Output RCLKF

25 PG2 Input/Output TXF

26 PG3 Input/Output RXF

27 PD4 Input/Output ATXB

28 PD5 Input/Output ARXB

29 PD2 Input/Output TPOUT– *
Ethernet transmit port

30 PD3 Input/Output TPOUT+ *

31 PD6 Input/Output TPIN– *
Ethernet receive port

32 PD7 Input/Output TPIN+ *

33–34 * n.c. Not connected

* Pins 29–34 are reserved for future RCM3000 series RabbitCore modules.
8 RabbitCore RCM3000

H
ea

de
r

J2
1 /RES Reset output Reset input

Reset output from Reset
Generator

2 PB0 Input/Output CLKB

3 PB2 Input/Output
IA0

/SWR
External Address 0

4 PB3 Input/Output
IA1

/SRD
External Address 1

5 PB4 Input/Output
IA2

SA0
External Address 2

6 PB5 Input/Output
IA3

SA1
External Address 3

7 PB6 Input/Output IA4 External Address 4

8 PB7 Input/Output
IA5

/SLAVEATTN
External Address 5

9 PF4 Input/Output
AQD1B

PWM0

10 PF5 Input/Output
AQD1A

PWM1

11 PF6 Input/Output
AQD2B

PWM2

12 PF7 Input/Output
AQD2A

PWM3

13 PE7 Input/Output
I7

/SCS

14 PE6 Input/Output I6

15 PE5 Input/Output
I5

INT1B

16 PE4 Input/Output
I4

INT0B

17 PE3 Input/Output I3

18 PE1 Input/Output
I1

INT1A

19 PE0 Input/Output
I0

INT0A

Table 1. RCM3000 Pinout Configurations (continued)

Pin Pin Name Default Use Alternate Use RCM3000 Use
User’s Manual 9

NOTE: Ports PD0 and PE2 are used for the Ethernet interface.

Locations R38–R43 allow the population of 0 Ω resistors (jumpers) that will be used to
enable future options. These locations are currently unused.

H
ea

de
r

J2

20 PG7 Input/Output RXE

21 PG6 Input/Output TXE

22 PG5 Input/Output RCLKE

23 PG4 Input/Output TCLKE

24 /IOWR Output External write strobe

25 /IORD Input External read strobe

26–27
SMODE0,
SMODE1

(0,0)—start executing at address zero

(0,1)—cold boot from slave port

(1,0)—cold boot from clocked Serial Port A

SMODE0 =1, SMODE1 = 1

Cold boot from asynchronous Serial Port A at
2400 bps (programming cable connected)

Also connected to
programming cable

28 /RESET_IN Input Input to Reset Generator

29 VRAM Output
Maximum Current Draw
15 µA

30 VBAT_EXT 3 V battery Input
Minimum battery
voltage 2.8 V

31 +3.3V Input 3.15–3.45 V DC

32 GND

33 n.c.
Future option for +5 V
input or +5 V output

34 GND

Table 1. RCM3000 Pinout Configurations (continued)

Pin Pin Name Default Use Alternate Use RCM3000 Use
10 RabbitCore RCM3000

2.1.1 Memory I/O Interface

The Rabbit 3000 address lines (A0–A19) and all the data lines (D0–D7) are routed inter-
nally to the onboard flash memory and SRAM chips. I/0 write (/IOWR) and I/0 read
(/IORD) are available for interfacing to external devices.

Parallel Port A can also be used as an external I/O data bus to isolate external I/O from the
main data bus. Parallel Port B pins PB2–PB7 can also be used as an external address bus.

When using the auxiliary I/O bus, you must add the following line at the beginning of
your program.

#define PORTA_AUX_IO // required to enable auxiliary I/O bus

The STATUS output has three different programmable functions:

1. It can be driven low on the first op code fetch cycle.

2. It can be driven low during an interrupt acknowledge cycle.

3. It can also serve as a general-purpose output.

2.1.2 Other Inputs and Outputs

Two status mode pins, SMODE0 and SMODE1, are available as inputs. The logic state of
these two pins determines the startup procedure after a reset.

/RESET_IN is an external input used to reset the Rabbit 3000 microprocessor and the
RabbitCore RCM3000 memory. /RES is an output from the reset circuitry that can be used
to reset other peripheral devices.
User’s Manual 11

2.2 Serial Communication

The RCM3000 Series board does not have an RS-232 or an RS-485 transceiver directly on
the board. However, an RS-232 or RS-485 interface may be incorporated on the board the
RCM3000 is mounted on. For example, the Prototyping Board has a standard RS-232
transceiver chip.

2.2.1 Serial Ports

There are six serial ports designated as Serial Ports A, B, C, D, E, and F. All six serial
ports can operate in an asynchronous mode up to the baud rate of the system clock divided
by 16. An asynchronous port can handle 7 or 8 data bits. A 9th bit address scheme, where
an additional bit is sent to mark the first byte of a message, is also supported. Serial Ports
A, B, C, and D can also be operated in the clocked serial mode. In this mode, a clock line
synchronously clocks the data in or out. Either of the two communicating devices can sup-
ply the clock. When the Rabbit 3000 provides the clock, the baud rate can be up to 80% of
the system clock frequency divided by 128, or 183,750 bps for a 29.4 MHz clock speed.

Serial Ports E and F can also be configured as SDLC/HDLC serial ports. The IRDA proto-
col is also supported in SDLC format by these two ports.

2.2.2 Ethernet Port

Figure 4 shows the pinout for the RJ-45 Ethernet port (J4). Note that some Ethernet con-
nectors are numbered in reverse to the order used here.

Figure 4. RJ-45 Ethernet Port Pinout

Two LEDs are placed next to the RJ-45 Ethernet
jack, one to indicate an Ethernet link (LNK) and one
to indicate Ethernet activity (ACT).

The Ethernet signals are also available on header J1.

The transformer/connector assembly ground is con-
nected to the RCM3000 printed circuit board digital
ground via a 0 Ω resistor, R31, as shown in Figure 5.

The RJ-45 connector is shielded to minimize EMI
effects to/from the Ethernet signals.

��������

��� !
"��

��""� �1�
��""� �1(
�""� �1�
��""� �1(

� 2

��� !
���#

Figure 5. Isolation Resistor R31

����������������
�

��

�������
�	
��

�	��
�	
��
12 RabbitCore RCM3000

2.2.3 Programming Port

Serial Port A has special features that allow it to cold-boot the system after reset. Serial
Port A is also the port that is used for software development under Dynamic C.

The RabbitCore RCM3000 Series has a 10-pin program header labeled J3. The Rabbit
3000 startup-mode pins (SMODE0, SMODE1) are presented to the programming port so
that an externally connected device can force the RCM3000 to start up in an external boot-
strap mode. The Rabbit 3000 Microprocessor User’s Manual provides more information
related to the bootstrap mode.

The programming port is used to start the RabbitCore RCM3000 in a mode where it will
download a program from the port and then execute the program. The programming port
transmits information to and from a PC while a program is being debugged in-circuit.

The RabbitCore RCM3000 can be reset from the programming port via the /RESET_IN line.

The Rabbit 3000 status pin is also presented to the programming port. The status pin is an
output that can be used to send a general digital signal.

The clock line for Serial Port A is presented to the programming port, which makes syn-
chronous serial communication possible.

Programming may also be initiated through the motherboard to which the RCM3000
series module is plugged in to since the Serial Port A (PC6 and PC7), SMODE0, SMODE1,
and /RESET_IN are available on headers J1 and J2 (see Table 1).

2.2.3.1 Alternate Uses of the Programming Port

The programming port may also be used as an application port with the DIAG connector
on the programming cable.

All three clocked Serial Port A signals are available as

• a synchronous serial port

• an asynchronous serial port, with the clock line usable as a general CMOS input

• two general CMOS inputs and one general CMOS output.

Two startup mode pins, SMODE0 and SMODE1, are available as general CMOS inputs
after they are read during the initial boot-up. The logic state of these two pins is very
important in determining the startup procedure after a reset.

/RES_IN is an external input used to reset the Rabbit 3000 microprocessor.

The status pin may also be used as a general CMOS output.

See Appendix E, “Programming Cable,” for more information.
User’s Manual 13

2.3 Other Hardware

2.3.1 Clock Doubler

The RCM3000 takes advantage of the Rabbit 3000 microprocessor’s internal clock dou-
bler. A built-in clock doubler allows half-frequency crystals to be used to reduce radiated
emissions. The 29.4 MHz frequency specified for the RCM3000 is generated using a
14.7456 MHz crystal. The clock doubler will not work for crystals with a frequency
above 26.7264 MHz.

The clock doubler may be disabled if 29.4 MHz clock speeds are not required. Disabling
the Rabbit 3000 microprocessor’s internal clock doubler will reduce power consumption
and further reduce radiated emissions. The clock doubler is disabled with a simple change
to the BIOS as described below.

2.3.2 Spectrum Spreader

The Rabbit 3000 features a spectrum spreader, which helps to mitigate EMI problems. By
default, the spectrum spreader is on automatically, but it may also be turned off or set to a
stronger setting. The means for doing so is through a simple change to the following BIOS
line in a way that is similar to the clock doubler described above.

#define ENABLE_SPREADER 1 // Set to 0 to disable spectrum spreader.

#define SPREADER_SETTING 0 // 0 = normal spreading, 1 = strong spreading

NOTE: The strong spectrum-spreading setting is not recommended since it may limit the
maximum clock speed or the maximum baud rate.

1. Open the BIOS source code file, RABBITBIOS.C in the BIOS directory.

2. Change the line

#define CLOCK_DOUBLED 1 // set to 1 to double clock if
 // Rabbit 2000: crystal <= 12.9024 MHz,
 // Rabbit 3000: crystal <= 26.7264 MHz,
 // or to 0 to always disable clock doubler

to read as follows.

#define CLOCK_DOUBLED 0

3. Save the change using File > Save.
14 RabbitCore RCM3000

2.4 Memory

2.4.1 SRAM

The RCM3000 is designed to accept 128K to 512K of SRAM packaged in a 32-pin TSOP
or sTSOP case.

2.4.2 Flash EPROM

The RCM3000 is also designed to accept 256K to 512K of flash EPROM packaged in a
32-pin TSOP or sTSOP case.

NOTE: Z-World recommends that any customer applications should not be constrained
by the sector size of the flash EPROM since it may be necessary to change the sector
size in the future.

Writing to arbitrary flash memory addresses at run time is also discouraged. Instead,
define a “user block” area to store persistent data. The functions writeUserBlock and
readUserBlock are provided for this.

A Flash Memory Bank Select jumper configuration option based on 0 Ω surface-mounted
resistors exists at header JP1 on the RCM3000 Series RabbitCore modules. This option,
used in conjunction with some configuration macros, allows Dynamic C to compile two
different co-resident programs for the upper and lower halves of the 256K flash in such a
way that both programs start at logical address 0000. This is useful for applications that
require a resident download manager and a separate downloaded program. See Technical
Note 218, Implementing a Serial Download Manager for a 256K Flash, for details.

2.4.3 Dynamic C BIOS Source Files

The Dynamic C BIOS source files handle different standard RAM and flash EPROM sizes
automatically.
User’s Manual 15

16 RabbitCore RCM3000

3. SOFTWARE REFERENCE

Dynamic C is an integrated development system for writing
embedded software. It runs on an IBM-compatible PC and is
designed for use with Z-World controllers and other controllers
based on the Rabbit microprocessor. Chapter 3 provides the
libraries, function calls, and sample programs related to the
RCM3000.

3.1 More About Dynamic C

Dynamic C has been in use worldwide since 1989. It is specially designed for program-
ming embedded systems, and features quick compile and interactive debugging in the real
environment. A complete reference guide to Dynamic C is contained in the Dynamic C
User’s Manual.

You have a choice of doing your software development in the flash memory or in the static
RAM included on the RCM3000. The advantage of working in RAM is to save wear on
the flash memory, which is limited to about 100,000 write cycles. The disadvantage is that
the code and data might not both fit in RAM.

NOTE: An application can be developed in RAM, but cannot run standalone from RAM
after the programming cable is disconnected. All standalone applications can only run
from flash memory.

NOTE: Do not depend on the flash memory sector size or type. Due to the volatility of
the flash memory market, the RCM3000 and Dynamic C were designed to accommo-
date flash devices with various sector sizes.

The disadvantage of using flash memory for debug is that interrupts must be disabled for
approximately 5 ms whenever a break point is set in the program. This can crash fast inter-
rupt routines that are running while you stop at a break point or single-step the program.
Flash memory or RAM is selected on the Options > Compiler menu.

Dynamic C provides a number of debugging features. You can single-step your program,
either in C, statement by statement, or in assembly language, instruction by instruction.
You can set break points, where the program will stop, on any statement. You can evaluate
watch expressions. A watch expression is any C expression that can be evaluated in the
context of the program. If the program is at a break point, a watch expression can view any
expression using local or global variables. If a periodic call to runwatch() is included in
your program, you will be able to evaluate watch expressions by hitting <Ctrl-U> without
stopping the program.
User’s Manual 17

3.2 Programming Cable
The RCM3000 is automatically in program mode when the PROG connector on the pro-
gramming cable is attached, and is automatically in run mode when no programming cable
is attached.

The DIAG connector of the programming cable may be used on header J3 of the RCM3000
with the board operating in the run mode. This allows the programming port to be used as
an application port. See Appendix E, “Programming Cable,” for more information.

Figure 5. Switching Between Program Mode and Run Mode

3.2.1 Changing from Program Mode to Run Mode

1. Disconnect the programming cable from header J3 of the RCM3000.

2. Reset the RCM3000. You may do this as explained in Figure 5.

The RCM3000 is now ready to operate in the run mode.

3.2.2 Changing from Run Mode to Program Mode

1. Attach the programming cable to header J3 on the RCM3000.

2. Reset the RCM3000. You may do this as explained in Figure 5.

The RCM3000 is now ready to operate in the program mode.

���

���

���

���

��� ��� ���

���

��
�

��
�

��������

�
�
�

	
�
����
���

���

3�

��	

3��

�������
	������	���

���
�

���

���

���
�����

����

��

4�

���

���

�����

�
�
�

��
�

�
�
�

35

���"��"3��6

��� ���

�
�
�

�
�
�

���

�
�

�
�
�

3��

���

���
��	

���

���

���

���

��	

���

���

���

��	

�
�

�

���

��

���

���

���

���

���

��

���

��

���

���

���

��

���

�
	

�
�

��	

���

���

���

���

���

���

��	

�
��

���

���

���

���

���

�
�

�
�

���

���

��

��	

����
�!�
����

��

��

�����

���	

���

�
��

���

���

��	

��

���

���

�
�

�
�

���

���

���

���

�
�
�3� 3

��

�
�

��

�

��

�!�	

3��

���			"����������

�4���

	�����
���			

����������

����

����

�
�
�2

�!��

�
�
�

��� �!�

�
�

��

�2

��

��

���

3�

���

������

���

������

�����

�
��

�
��

�
�
�

���

���

�
�	

�
��

��

��

������

��� ���

�

�5

32 �!�

���
����

���

����

���2

���5

����

�!�

���

�

��
���

�!�

��5

�!�

��� ���

��
�

�
�
�

�
�

�
�
�

�
�
	

�
�
�

�
�
�

�
�
�

��
�

�
�
�

�
��

�
��

�
�
�

�
�
	

�
�
�

�
�

�
�
�

�
�
�

�
��

��
�

���������
���

���			"������7����"�����

����4�7"�����

3�3�	

����4�7"�����

��

3�

��8��

�����
3��

�1�""�1�

�1�""�1�"""""""""""���

��

�
��

����

���5

���	

�!5

����

����

����

�!

3�

��	

���

���

���

���

��	

���

���

���

��	

�
�

�

���

��

���

���

���

��

���

����

���

�����

���

���

��	

��

���

���

�
�

�
�

���

���

���

����

���

���

��	

�
��

���

���

���

���

���

�
�

�
�

���

���

��

��	

���

���

��

���

��

���

���

���

��

���

�
	

�
�

��	

���

���

���

���

����
�!�
����

��

���
����

���	

����

���

����

����

�
�

�
��

�
�	

�
2

�
�

�
5

�
��

�
�

���

����

�/%%&+9

��

3��

�$�$�

7�

3�
�

3�
�

3�

3�
�

�
�
�

4�
6

3�

���

� �� �� ��

��

3

�
��

�
��

�
�
�
�
�
�

7
���

�2

7�

�5

:�

��

�
�5

�
�2

�
��

�
�

�
��

�
�5

�
��

�
��

��

����
2

�
�5

���

���

�
��

���
�	��

��

�
�5

���
���
���

���

�
�
�

������
������

�
�
�

��

���

�2�
���
���

��

�
��
�

�
�
�
�

�0+&'"&'.&

�$
��"���";$+%

"����������
����	

����-��.
�66�
�"!���7�������,��,� �"�8
� �	��	
�������!"#$!�	���������!%�5�
������������&
��	��'���
������	�	�(������	��)%�5�
����	*�%�����������(��	+�
9������ �#��,����������,�/��,� ��,��$��3
18 RabbitCore RCM3000

3.3 Dynamic C Libraries

With Dynamic C running, click File > Open, and select Lib. The following list of
Dynamic C libraries will be displayed.

There is no unique library that is specific to the RCM3000. The functions in the above
libraries are described in the Dynamic C Function Reference Manual.
User’s Manual 19

3.3.1 I/O

The RCM3000 was designed to interface with other systems, and so there are no drivers
written specifically for the I/O. The general Dynamic C read and write functions allow
you to customize the parallel I/O to meet your specific needs. For example, use

WrPortI(PEDDR, &PEDDRShadow, 0x00);

to set all the Port E bits as inputs, or use

WrPortI(PEDDR, &PEDDRShadow, 0xFF);

to set all the Port E bits as outputs.

When using the auxiliary I/O bus on the Rabbit 3000 chip, add the line

#define PORTA_AUX_IO // required to enable auxiliary I/O bus

to the beginning of any programs using the auxiliary I/O bus.

The sample programs in the Dynamic C SAMPLES/RCM3000 directory provide further
examples.

3.3.2 Serial Communication Drivers

Library files included with Dynamic C provide a full range of serial communications sup-
port. The RS232.LIB library provides a set of circular-buffer-based serial functions. The
PACKET.LIB library provides packet-based serial functions where packets can be delim-
ited by the 9th bit, by transmission gaps, or with user-defined special characters. Both
libraries provide blocking functions, which do not return until they are finished transmit-
ting or receiving, and nonblocking functions, which must be called repeatedly until they
are finished. For more information, see the Dynamic C Function Reference Manual and
Technical Note 213, Rabbit 2000 Serial Port Software.

3.3.3 TCP/IP Drivers

The TCP/IP drivers are located in the TCPIP directory.

Complete information on these libraries and the TCP/IP functions is provided in the
Dynamic C TCP/IP User’s Manual.
20 RabbitCore RCM3000

3.4 Sample Programs

Sample programs are provided in the Dynamic C Samples folder, which is shown below.

The various folders contain specific sample programs that illustrate the use of the corre-
sponding Dynamic C libraries. For example, the sample program PONG.C demonstrates
the output to the Dynamic C STDIO window.

Two folders contain sample programs that illustrate features unique to the RCM3000.

• RCM3000—Demonstrates the basic operation and the Ethernet functionality of the
RCM3000.

• TCPIP—Demonstrates more advanced TCP/IP programming for Z-World’s Ethernet-
enabled Rabbit-based boards.

Follow the instructions included with the sample program to connect the RCM3000 and
the other hardware identified in the instructions.

To run a sample program, open it with the File menu (if it is not still open), compile it
using the Compile menu (or press F5), and then run it by selecting Run in the Run menu
(or press F9). The RCM3000 must be in Program Mode (see Figure 5) and must be con-
nected to a PC using the programming cable.

More complete information on Dynamic C is provided in the Dynamic C User’s Manual.
User’s Manual 21

3.5 Upgrading Dynamic C

Dynamic C patches that focus on bug fixes are available from time to time. Check the Web
sites

• www.zworld.com/support/

or

• www.rabbitsemiconductor.com/support/

for the latest patches, workarounds, and bug fixes.

The default installation of a patch or bug fix is to install the file in a directory (folder) dif-
ferent from that of the original Dynamic C installation. Z-World recommends using a dif-
ferent directory so that you can verify the operation of the patch without overwriting the
existing Dynamic C installation. If you have made any changes to the BIOS or to libraries,
or if you have programs in the old directory (folder), make these same changes to the
BIOS or libraries in the new directory containing the patch. Do not simply copy over an
entire file since you may overwrite a bug fix; of course, you may copy over any programs
you have written. Once you are sure the new patch works entirely to your satisfaction, you
may retire the existing installation, but keep it available to handle legacy applications.

3.5.1 Upgrades

Dynamic C installations are designed for use with the board they are included with, and
are included at no charge as part of our low-cost kits. Dynamic C is a complete software
development system, but does not include all the Dynamic C features. Z-World also offers
add-on Dynamic C modules containing the popular µC/OS-II real-time operating system,
as well as PPP, Advanced Encryption Standard (AES), and other select libraries. In addi-
tion to the Web-based technical support included at no extra charge, a one-year telephone-
based technical support module is also available for purchase.
22 RabbitCore RCM3000

http://www.zworld.com/support/
http://www.rabbitsemiconductor.com/support/

APPENDIX A. RABBITCORE RCM3000
SPECIFICATIONS

Appendix A provides the specifications for the RCM3000, and
describes the conformal coating.
User’s Manual 23

A.1 Electrical and Mechanical Characteristics

Figure A-1 shows the mechanical dimensions for the RCM3000.

Figure A-1. RCM3000 Dimensions

"�	��	
�	%	�
��
�&	
�������
%���'����
�������
���	�
��
�&��
�''	���(
%��
'�	���	
&	��	�
���������)

7�

3�
�

3�
�

3�

3�
�

�
�
�

4�
6

3�

���

�������

��

3

�
��

�
��

�
�
�
�
�
�

7���

�2

7�

�5

:�

��

�
�5

�
�2 �

�

�

�
�

�
��

�
�5

�
��

�
��

��

��� �
2

�
�5

���

���

�
��

���
�	��

��

�
�5

���
���
���

���

�
�
�

��� ���
������

�
�
�

��

���

�2�
���
���

��

	�
��

<�
�=

	��		"'-/
<���=

	���
<�2=

	�
	2 <�
=

	�
��

�
<�
��
=

	�
2�

<�
�=

3�3�

	�
�	

<�
��
=

	�
��

�
<�
��
=

	�
2�

<�
�=

��
��

�
<�
5�
�=

	�
��

<�
�=

	���
<���	=

���2
<	�	=

��2�	
<���	=

	�
��

�
<�
��
�=

	�
�	

<�
��
�=

�����
<�5��=

��2�	
<���	=

��
�

	
<
�
�=

����
<��5=
24 RabbitCore RCM3000

It is recommended that you allow for an “exclusion zone” of 0.04" (1 mm) around the
RCM3000 in all directions when the RCM3000 is incorporated into an assembly that
includes other printed circuit boards. This “exclusion zone” that you keep free of other
components and boards will allow for sufficient air flow, and will help to minimize any
electrical or electromagnetic interference between adjacent boards. An “exclusion zone”
of 0.08" (2 mm) is recommended below the RCM3000 when the RCM3000 is plugged
into another assembly using the shortest connectors for headers J1 and J2. Figure A-2
shows this “exclusion zone.”

Figure A-2. RCM3000 “Exclusion Zone”

	�
	2 <�
=

	�
	2 <�
=

	�
�

<�
�=

��5
<�5�	=

	�
�

<�
�=

3�3�

$(������
*��	

�����
<�5��=

��2�	
<���	=

��2	�
<����=
User’s Manual 25

Table A-1 lists the electrical, mechanical, and environmental specifications for the RCM3000.

Table A-1. RabbitCore RCM3000 Specifications

Feature RCM3000 RCM3010

Microprocessor Rabbit 3000 at 29.4 MHz

EMI Reduction Spectrum spreader for reduced EMI (radiated emissions)

Ethernet Port 10Base-T, RJ-45, 2 LEDs

Flash Memory 512K (2 × 256K) 256K

SRAM 512K 128K

Backup Battery Connection for user-supplied backup battery (to support RTC and SRAM)

General-Purpose I/O

52 parallel digital I/0 lines:

• 44 configurable I/O,
• 4 fixed inputs,
• 4 fixed outputs

Additional Digital Inputs 2 startup mode, reset in

Additional Digital Outputs Status, reset out

Auxiliary I/O Bus 8 data lines and 6 address lines (shared with I/O) plus I/O read/write

Serial Ports

6 shared high-speed, CMOS-compatible ports:

• 6 configurable as asynchronous (with IrDA),
4 as clocked serial (SPI), and 2 as
SDLC/HDLC (with IrDA)

• 1 asynchronous serial port dedicated for
programming

• support for MIR/SIR IrDA transceiver

Serial Rate Max. asynchronous baud rate = CLK/8

Slave Interface
A slave port allows the RCM3100 to be used as a master or as an
intelligent peripheral device with Rabbit-based or any other type of
processor

Real-Time Clock Yes

Timers
Ten 8-bit timers (6 cascadable from the first),

one 10-bit timer with 2 match registers

Watchdog/Supervisor Yes

Pulse-Width Modulators 10-bit free-running counter and four pulse-width registers

Input Capture
2- channel input capture can be used to time input signals

from various port pins

Quadrature Decoder
2-channel quadrature decoder accepts inputs
from external incremental encoder modules

Power
3.15 V to 3.45 V DC

150 mA @ 3.3 V
26 RabbitCore RCM3000

A.1.1 Headers

The RCM3000 uses headers at J1 and J2 for physical connection to other boards. J1 and J2
are 2 × 17 SMT headers with a 2 mm pin spacing. J3, the programming port, is a 2 × 5
header with a 2 mm pin spacing.

Figure A-3 shows the layout of another board for the RCM3000 to be plugged into. These
values are relative to the mounting hole.

A.1.2 Physical Mounting

A 9/32” (7 mm) standoff with a 2-56 screw is recommended to attach the RCM3000 to a
user board at the hole position shown in Figure A-3. Either use plastic hardware, or use
insulating washers to keep any metal hardware from shorting out signals on the RCM3000.

Figure A-3. User Board Footprint for RCM3000

Operating Temperature –40°C to +70°C

Humidity 5% to 95%, noncondensing

Connectors (for connection to
headers J4 and J5)

Two 2 × 17, 2 mm pitch

Board Size
1.850" × 2.725" × 0.86"

(47 mm × 69 mm × 22 mm)

Table A-1. RabbitCore RCM3000 Specifications (continued)

Feature RCM3000 RCM3010

3
	�5�
<����=

����
<���=

3�

3�

���			"
$$%;+-�%

	�	�5
<��	=

	��		"'-/
<���=

	�	�	",>"%9;
<	��=

	�	�5
<��	=

	���
<2�	=

�����
<�2��=

����
<�2�5=
User’s Manual 27

A.2 Bus Loading

You must pay careful attention to bus loading when designing an interface to the
RCM3000. This section provides bus loading information for external devices.

Table A-2 lists the capacitance for the various RCM3000 I/O ports.

Table A-3 lists the external capacitive bus loading for the various RCM3000 output ports.
Be sure to add the loads for the devices you are using in your custom system and verify
that they do not exceed the values in Table A-3.

Table A-2. Capacitance of Rabbit 3000 I/O Ports

I/O Ports
Input

Capacitance
(pF)

Output
Capacitance

(pF)

Parallel Ports A to G 12 14

Table A-3. External Capacitive Bus Loading -40°C to +70°C

Output Port
Clock Speed

(MHz)
Maximum External

Capacitive Loading (pF)

All I/O lines with clock
doubler enabled

29.4 30–70

All I/O lines with clock
doubler disabled

14.7456 100
28 RabbitCore RCM3000

Figure A-4 shows a typical timing diagram for the Rabbit 3000 microprocessor external
memory read and write cycles.

Figure A-4. Memory Read and Write Cycles

�/'+

�/'+

�	���+
�	��
,��
-���
����	�.

�46

�?�5@	A

�	���+
/���	
,��
	(���
-���
����	�.

�46

�?�5@	A �����

�� ��

�� �B ��

�����

���1 ���1

�?�@	A �����

�*$0'

�,&%C;

���1

���1

���1 ���1

������?�@	A
��DE� ���DE

���1

���1

���1 ���1

���1 ���1
User’s Manual 29

Table A-4 lists the delays in gross memory access time for several values of VDD.

The measurements are taken at the 50% points under the following conditions.

• T = -40°C to 85°C, V = VDD ±10%

• Internal clock to nonloaded CLK pin delay � 1 ns @ 85°V/4.5 V

The clock to address output delays are similar, and apply to the following delays.

• Tadr, the clock to address delay

• TCSx, the clock to memory chip select delay

• TWEx, the clock to memory write strobe delay

• TIOCSx, the clock to I/O chip select delay

• TIORD, the clock to I/O read strobe delay

• TIOWR, the clock to I/O write strobe delay

• TBUFEN, the clock to I/O buffer enable delay

The data setup time delays are similar for both Tsetup and Thold.

When the spectrum spreader is enabled with the clock doubler, every other clock cycle is
shortened (sometimes lengthened) by a maximum amount given in the table above. The
shortening takes place by shortening the high part of the clock. If the doubler is not
enabled, then every clock is shortened during the low part of the clock period. The maxi-
mum shortening for a pair of clocks combined is shown in the table.

Table A-4. Data and Clock Delays VDD ±10%, Temp, -40°C–+85°C (maximum)

VDD

Clock to Address Output Delay
(ns) Data Setup

Time Delay
(ns)

Spectrum Spreader Delay
(ns)

30 pF 60 pF 90 pF
Normal

dbl/no dbl

Strong

dbl/no dbl

3.3 6 8 11 1 3/4.5 4.5/9

2.7 7 10 13 1.5 3.5/5.5 5.5/11

2.5 8 11 15 1.5 4/6 6/12

1.8 18 24 33 3 8/12 11/22
30 RabbitCore RCM3000

A.3 Rabbit 3000 DC Characteristics

Table A-5 outlines the DC characteristics for the Rabbit at 3.3 V over the recommended
operating temperature range from Ta = –55°C to +125°C, VDD = 3.0 V to 3.6 V.

Table A-5. 3.3 Volt DC Characteristics

Symbol Parameter Test Conditions Min Typ Max Units

IIH Input Leakage High VIN = VDD, VDD = 3.3 V 1 µA

IIL
Input Leakage Low
(no pull-up)

VIN = VSS, VDD = 3.3 V -1 µA

IOZ Output Leakage (no pull-up)
VIN = VDD or VSS,

VDD = 3.3 V
-1 1 µA

VIL CMOS Input Low Voltage 0.3 x VDD V

VIH CMOS Input High Voltage 0.7 x VDD V

VT CMOS Switching Threshold VDD = 3.3 V, 25°C 1.65 V

VOL Low-Level Output Voltage
IOL = See (sinking)

 VDD = 3.0 V
0.4 V

VOH High-Level Output Voltage
IOH = See (sourcing)

 VDD = 3.0 V
0.7 x VDD V
User’s Manual 31

A.4 I/O Buffer Sourcing and Sinking Limit

Unless otherwise specified, the Rabbit I/O buffers are capable of sourcing and sinking
6.8 mA of current per pin at full AC switching speed. Full AC switching assumes a
29.4 MHz CPU clock and capacitive loading on address and data lines of less than 70 pF
per pin. The absolute maximum operating voltage on all I/O is 5.5 V.

Table A-6 shows the AC and DC output drive limits of the parallel I/O buffers when the
Rabbit 3000 is used in the RCM3000.

Under certain conditions, the maximum instantaneous AC/DC sourcing or sinking current
may be greater than the limits outlined in Table A-6. The maximum AC/DC sourcing cur-
rent can be as high as 12.5 mA per buffer as long as the number of sourcing buffers does
not exceed three per VDD or VSS pad, or up to six outputs between pads. Similarly, the

maximum AC/DC sinking current can be as high as 8.5 mA per buffer as long as the num-
ber of sinking buffers does not exceed three per VDD or VSS pad, or up to six outputs

between pads. The VDD bus can handle up to 35 mA, and the VSS bus can handle up to

28 mA. All these analyses were measured at 100°C.

Table A-6. I/O Buffer Sourcing and Sinking Capability

Pin Name

Output Drive (Full AC Switching)

Sourcing/Sinking Limits
(mA)

Sourcing Sinking

All data, address, and I/O
lines with clock doubler
enabled

6.8 6.8
32 RabbitCore RCM3000

A.5 Conformal Coating

The areas around the 32 kHz real-time clock crystal oscillator has had the Dow Corning
silicone-based 1-2620 conformal coating applied. The conformally coated area is shown
in Figure A-5. The conformal coating protects these high-impedance circuits from the
effects of moisture and contaminants over time.

Figure A-5. RCM3000 Areas Receiving Conformal Coating

Any components in the conformally coated area may be replaced using standard soldering
procedures for surface-mounted components. A new conformal coating should then be
applied to offer continuing protection against the effects of moisture and contaminants.

NOTE: For more information on conformal coatings, refer to Technical Note 303, Con-
formal Coatings.

�$�F$+G/009"�$/%&'
/+&/

7�

3�
�

3�
�

3�

3�
�

�
�
�

4�
6

3�

���

�������

��

3

�
��

�
��

�
�
�
�
�
�

7���

�2

7�

�5

:�

��

�
�5

�
�2 �

�

�

�
�

�
��

�
�5

�
��

�
��

��

��� �
2

�
�5

���

���

�
��

���
�	��

��

�
�5

���
���
���

���

�
�
�

��� ���
������

�
�
�

��

���

�2�
���
���

��
User’s Manual 33

A.6 Jumper Configurations

Figure A-6 shows the header locations used to configure the various RCM3000 options
via jumpers.

Figure A-6. Location of RCM3000 Configurable Positions

Table A-7 lists the configuration options.

NOTE: The jumper connections are made using 0 Ω surface-mounted resistors.

Table A-7. RCM3000 Jumper Configurations

Header Description Pins Connected
Factory
Default

JP1 Flash Memory Bank Select
1–2 Normal Mode ×
2–3 Bank Mode

JP2 Flash Memory Size
1–2 128K/256K ×
2–3 512K

JP3 Flash Memory Size
1–2 128K/256K RCM3000

2–3 512K

JP4 SRAM Size
1–2 128K RCM3010

2–3 512K RCM3000

JP5 Auxiliary I/O data bus

1–2 Buffer disabled

2–3 Buffer enabled ×

3��

3��

3�

3��

3��

��'
���	 ������
���	
34 RabbitCore RCM3000

APPENDIX B. PROTOTYPING BOARD

Appendix B describes the features and accessories of the Proto-
typing Board, and explains the use of the Prototyping Board to
demonstrate the RCM3000 and to build prototypes of your own
circuits.
User’s Manual 35

B.1 Mechanical Dimensions and Layout

Figure B-1 shows the mechanical dimensions and layout for the RCM3000 Prototyping Board.

Figure B-1. RCM3000 Prototyping Board Dimensions

���

���

���

���

��� ��� ���

���

��
�

��
�

��������

�
�
�

	
�
����
���

���

3�

��	

3��

�������
	������	���

���
�

���

���

���
�����

����

��

4�

���

���

�����

�
�
�

��
�

�
�
�

35

���"��"3��6

��� ���

�
�
�

�
�
�

���

�
�

�
�
�

3��

���

���
��	

���

���

���

���

��	

���

���

���

��	

�
�

�

���

��

���

���

���

���

���

��

���

��

���

���

���

��

���

�
	

�
�

��	

���

���

���

���

���

���

��	

�
��

���

���

���

���

���

�
�

�
�

���

���

��

��	

����
�!�
����

��

��

�����

���	

���

�
��

���

���

��	

��

���

���

�
�

�
�

���

���

���

���

�
�
�3� 3

��

�
�

��

�

��

�!�	

3��

���			"����������

�4���

	�����
���			

����������

����

����

�
�
�2

�!��

�
�
�

��� �!�

�
�

��

�2

��

��

���

3�

���

������

���

������

�����

�
��

�
��

�
�
�

���

���

�
�	

�
��

��

��

������

��� ���

�

�5

32 �!�

���
����

���

����

���2

���5
����

�!�

���

�

��
���

�!�

��5

�!�

��� ���

��
�

�
�
�

�
�

�
�
�

�
�
	

�
�
�

�
�
�

�
�
�

��
�

�
�
�

�
��

�
��

�
�
�

�
�
	

�
�
�

�
�

�
�
�

�
�
�

�
��

��
�

���������
���

���			"������7����"�����

����4�7"�����

3�3�	

����4�7"�����

��

3�

��8��

�����
3��

�1�""�1�

�1�""�1�"""""""""""���

��

�
��

����

���5

���	

�!5

����

����

����

�!

3�

��	

���

���

���

���

��	

���

���

���

��	

�
�

�

���

��

���

���

���

��

���

����

���

�����

���

���

��	

��

���

���

�
�

�
�

���

���

���

����

���

���

��	

�
��

���

���

���

���

���

�
�

�
�

���

���

��

��	

���

���

��

���

��

���

���

���

��

���

�
	

�
�

��	

���

���

���

������

����
�!�
����

��

���
����

���	

����

���

����

����

�
�

�
��

�
�	

�
2

�
�

�
5

�
��

�
�

���

����

�/%%&+9

��

3��

����
<���=

��
��

<�

=

36 RabbitCore RCM3000

Table B-1 lists the electrical, mechanical, and environmental specifications for the Proto-
typing Board.

B.2 Power Supply

The RCM3000 requires a regulated 3.3 V ± 0.15 V DC power source to operate. Depend-
ing on the amount of current required by the application, different regulators can be used
to supply this voltage.

The Prototyping Board has an onboard +5 V switching power regulator from which a
+3.3 V linear regulator draws its supply. Thus both +5 V and +3.3 V are available on the
Prototyping Board.

The Prototyping Board itself is protected against reverse polarity by a Shottky diode at D2
as shown in Figure B-2.

Figure B-2. Prototyping Board Power Supply

Table B-1. RCM3000 Prototyping Board Specifications

Parameter Specification

Board Size 5.25" × 6.75" × 1.00" (133 mm × 171 mm × 25 mm)

Operating Temperature –20°C to +60°C

Humidity 5% to 95%, noncondensing

Input Voltage 8 V to 24 V DC

Maximum Current Draw
(including user-added circuits)

800 mA max. for +3.3 V supply,
1 A total +3.3 V and +5 V combined

Prototyping Area
2.0" × 3.5" (50 mm × 90 mm) throughhole, 0.1" spacing,
additional space for SMT components

Standoffs/Spacers 5, accept 4-40 × 3/8 screws

4�����"�����
����4����

�
�
�
�
�

��

35�3��

�	"H

4�����
������

��"�

�

�

�

�

 �4�		

��

��"H
 �	"H

��"�

4�

���
	"HD

��
���2�5

�����D���"�����"����4����

����
��

4�����
User’s Manual 37

B.3 Using the Prototyping Board

The Prototyping Board is actually both a demonstration board and a prototyping board.
As a demonstration board, it can be used to demonstrate the functionality of the RCM3000
right out of the box without any modifications to either board. There are no jumpers or dip
switches to configure or misconfigure on the Prototyping Board so that the initial setup is
very straightforward.

The Prototyping Board comes with the basic components necessary to demonstrate the
operation of the RCM3000. Two LEDs (DS1 and DS2) are connected to PG6 and PG7,
and two switches (S2 and S3) are connected to PG1 and PG0 to demonstrate the interface
to the Rabbit 3000 microprocessor. Reset switch S1 is the hardware reset for the
RCM3000.

The Prototyping Board provides the user with RCM3000 connection points brought out con-
veniently to labeled points at headers J2 and J4 on the Prototyping Board. Small to medium
circuits can be prototyped using point-to-point wiring with 20 to 30 AWG wire between the
prototyping area and the holes at locations J2 and J4. The holes are spaced at 0.1" (2.5 mm),
and 40-pin headers or sockets may be installed at J2 and J4. The pinouts for locations J2 and
J4, which correspond to headers J1 and J2, are shown in Figure B-3.

Figure B-3. RCM3000 Prototyping Board Pinout
(Top View)

����"#"�$%"�$��&�%&'

&�
��	
���
���
���
���
��	
���
���
���
��	
�
�
�

���
��
���
���
���

���
���
��
���
��
���
���
���
��
���
�
	
�
�
��	
���
���
���

������

&�
��
���
����
������
�����
���
���
��	
��
���
���
�
�
�
�
���
���
���
����

���
���

���� �!�
������ ��
�����	

�
��
���
���
���
���
���
�
�
�
�
���
���
��
��	
38 RabbitCore RCM3000

The small holes are also provided for surface-mounted components that may be installed
around the prototyping area.

There is a 2.0" × 3.5" through-hole prototyping space available on the Prototyping Board.
+3.3 V, +5 V, and GND traces run along the edge of the Prototyping Board for easy access.

B.3.1 Adding Other Components

There are pads that can be used for surface-mount prototyping involving SOIC devices.
There is provision for seven 16-pin devices (six on one side, one on the other side). There
are 10 sets of pads that can be used for 3- to 6-pin SOT23 packages. There are also pads
that can be used for SMT resistors and capacitors in an 0805 SMT package. Each compo-
nent has every one of its pin pads connected to a hole in which a 30 AWG wire can be sol-
dered (standard wire wrap wire can be soldered in for point-to-point wiring on the
Prototyping Board). Because the traces are very thin, carefully determine which set of
holes is connected to which surface-mount pad.

B.3.2 Measuring Current Draw

The Prototyping Board has a current-measurement feature available on header JP1. Nor-
mally, a jumper connects pins 1–2 and pins 5–6 on header JP1, which provide jumper con-
nections for the +5 V and the +3.3 V regulated voltages respectively. You may remove a
jumper and place an ammeter across the pins instead, as shown in the example in
Figure B-4, to measure the current being drawn.

Figure B-4. Prototyping Board Current-Measurement Option

3��

�������
	������	���

���
�

���

���

�	
User’s Manual 39

B.3.3 Attach Modules to Prototyping Board

Turn the RCM3000 module so that the Ethernet connector end of the module extends to
the right, as shown in Figure B-5 below. Align the module headers J1 and J2 into sockets
J12 and J13 (the MASTER slots) on the Prototyping Board. Press the module’s pins firmly
into the Prototyping Board headers.

Figure B-5. Install the RCM3000 on the Prototyping Board

NOTE: It is important that you line up the pins of the module headers exactly with the
corresponding pins on the Prototyping Board. The header pins may become bent or
damaged if the pin alignment is offset, and the module will not work. Permanent elec-
trical damage to the module may also result if a misaligned module is powered up.

With the RCM3000 plugged into the MASTER slots, it has full access to the RS-232
transceiver, and can act as the “master” relative to another RabbitCore RCM3000 or
RCM3100 plugged into the SLAVE slots, which acts as the “slave.”

B.3.4 Other Prototyping Board Modules and Options

An optional LCD/keypad module is available that can be mounted on the Prototyping
Board. Refer to Appendix C, “LCD/Keypad Module,” for complete information.

A motor control option is available for development by the customer. Refer to
Appendix F, “Motor Control Option,” for complete information on using the Rabbit
3000’s Parallel Port F in conjunction with this application.

���

���

���

���

��� ��� ���

���

��
�

��
�

��������

�
�
�

	
�
����
���

���

3�

��	

3��

�������
	������	���

���
�

���

���

���
�����

����

��

4�

���

���

�����

�
�
�

��
�

�
�
�

35

���"��"3��6

��� ���

�
�
�

�
�
�

���

�
�

�
�
�

3��

���

���
��	

���

���

���

���

��	

���

���

���

��	

�
�

�

���

��

���

���

���

���

���

��

���

��

���

���

���

��

���

�
	

�
�

��	

���

���

���

���

���

���

��	

�
��

���

���

���

���

���

�
�

�
�

���

���

��

��	

����
�!�
����

��

��

�����

���	

���

�
��

���

���

��	

��

���

���

�
�

�
�

���

���

���

���

�
�
�3� 3

��

�
�

��

�

��

�!�	

3��

���			"����������

�4���

	�����
���			

����������

����

����

�
�
�2

�!��

�
�
�

��� �!�

�
�

��

�2

��

��

���

3�

���

������

���

������

�����

�
��

�
��

�
�
�

���

���

�
�	

�
��

��

��

������

��� ���

�

�5

32 �!�

���
����

���

����

���2

���5
����

�!�

���

�

��
���

�!�

��5

�!�

��� ���

��
�

�
�
�

�
�

�
�
�

�
�
	

�
�
�

�
�
�

�
�
�

��
�

�
�
�

�
��

�
��

�
�
�

�
�
	

�
�
�

�
�

�
�
�

�
�
�

�
��

��
�

���������
���

���			"������7����"�����

����4�7"�����

3�3�	

����4�7"�����

��

3�

��8��

�����
3��

�1�""�1�

�1�""�1�"""""""""""���

��

�
��

����

���5

���	

�!5

����

����

����

�!

3�

��	

���

���

���

���

��	

���

���

���

��	

�
�

�

���

��

���

���

���

��

���

����

���

�����

���

���

��	

��

���

���

�
�

�
�

���

���

���

����

���

���

��	

�
��

���

���

���

���

���

�
�

�
�

���

���

��

��	

���

���

��

���

��

���

���

���

��

���

�
	

�
�

��	

���

���

���

������

����
�!�
����

��

���
����

���	

����

���

����

����

�
�

�
��

�
�	

�
2

�
�

�
5

�
��

�
�

���

����

�/%%&+9

��

3��

�������

7�

3�
�

3�
�

3�

3�
�

�
�
�

4�
6

3�

���

� �� �� ��

��

3

�
��

�
��

�
�
�
�
�
�

7
���

�2

7�

�5

:�

��

�
�5

�
�2

�
��

�
�

�
��

�
�5

�
��

�
��

��

����
2

�
�5

���

���

�
��

���
�	��

��

�
�5

���
���
���

���

�
�
�

������
������

�
�
�

��

���

�2�
���
���

��

&��&��
40 RabbitCore RCM3000

APPENDIX C. LCD/KEYPAD MODULE

An optional LCD/keypad is available for the RCM3000 Series Pro-
totyping Board. Appendix C describes the LCD/keypad and pro-
vides the software APIs to make full use of the LCD/keypad.

C.1 Specifications

Two optional LCD/keypad modules—with or without a panel-mounted NEMA 4 water-
resistant bezel—are available for use with the RCM3000 Series Prototyping Board. They
are shown in Figure C-1.

Figure C-1. LCD/Keypad Modules Versions

One version (no bezel) mounts directly on the Prototyping Board, and the other version is
designed to be installed at a remote location up to 60 cm (24") away. Contact your
Z-World sales representative or your authorized Z-World distributor for further assistance
in purchasing an LCD/keypad module.

0�123	+'��
����	�
User’s Manual 41

Mounting hardware and a 60 cm (24") extension cable are also available for the
LCD/keypad module through your Z-World sales representative or authorized distributor.

Table C-1 lists the electrical, mechanical, and environmental specifications for the
LCD/keypad module.

Table C-1. LCD/Keypad Specifications

Parameter Specification

Board Size
2.60" × 3.00" × 0.75"
(66 mm × 76 mm × 19 mm)

Temperature
Operating Range: 0°C to +50°C
Storage Range: –40°C to +85°C

Humidity 5% to 95%, noncondensing

Power Consumption 1.5 W maximum*

* The backlight adds approximately 650 mW to the power consumption.

Connections
Connects to high-rise header sockets on RCM3000 Series
Prototyping Board

LCD Panel Size 122 × 32 graphic display

Keypad 7-key keypad

LEDs Seven user-programmable LEDs
42 RabbitCore RCM3000

C.2 Jumper-Selectable Voltage Settings for All Boards

Before using the LCD/keypad module, set the voltage for 5 V by not using the jumper
across any pins on header J5 as shown in Figure C-2.

Figure C-2. LCD/Keypad Module Voltage Settings

NOTE: Older LCD/keypad modules that do not have a header at J5 are limited to operate
only at 5 V, and will work with the RCM3000 Series Prototyping Board. The older
LCD/keypad modules are no longer being sold.

�
�

��

�
�

�

�� �� ��

�
�

��

3�� �
��

��

�
�	

���

�
�

��
���

�
�

�2

���

���

��� �� ��� ��	 �5 ��� ���

�
�2
:2

�
��

:�

�
��:�

��

3�

����4�7
�����

3�

6��

�
�� :�

�
�� :�

�
� :�

�
�	

:
 �
�5

�� ���

�
��

�
��

�
��

��

��

���5
�

4��� ���

��
��

��

3�

:�

3�

��� ���

3�

4��		
��2"�

��D��
�"�

�

�

�

����"#"�"�

0�123	+'��
����	
��'	�
���%���������

��"�� ������/���� '���
.�������"

�����0
��9!��

��

�	
��

	��

���

���

��

�	�	

�

3�
�

�

�

�
/+
%"�

$�
"�
	�
8	
��
�

User’s Manual 43

C.3 Keypad Labeling

The keypad may be labeled according to your needs. A template is provided in Figure C-3
to allow you to design your own keypad label insert.

Figure C-3. Keypad Template

To replace the keypad legend, remove the old legend and insert your new legend prepared
according to the template in Figure C-3. The keypad legend is located under the blue key-
pad matte, and is accessible from the left only as shown in Figure C-4.

Figure C-4. Removing and Inserting Keypad Label

���	
<�2=

���
<�	=

6&9;/'"0/I&0"-,"0$�/%&'

���"%*&"I0C&"J&9;/'"G/%%&�
44 RabbitCore RCM3000

C.4 Header Pinouts

Figure C-5 shows the pinouts for the LCD/keypad module.

Figure C-5. LCD/Keypad Module Pinouts

C.4.1 I/O Address Assignments

The LCD and keypad on the LCD/keypad module are addressed by the /CS strobe as
explained in Table C-2.

Table C-2. LCD/Keypad Module Address Assignment

Address Function

0xC000 Device select base address (/CS)

0xCxx0–0xCxx7 LCD control

0xCxx8 LED enable

0xCxx9 Not used

0xCxxA 7-key keypad

0xCxxB (bits 0–6) 7-LED driver

0xCxxB (bit 7) LCD backlight on/off

0xCxxC–ExxF Not used

�
�
��

�
�
��

�
�
��

�
�
	�

�
��

�
�

�
�
�

4�
�
�

4�
�
�

4�
�

4�
�
�

��
�
�

�
�
�

�
�
��

�
�
��

�
�
�

�
�
��

�
	�

�
��

�
�
�

�
�
�

4�
�
�

4�
�
�

4�
�
�

��
�

��
�
6
4�

&�

�
�
�

�
�
�

4�
�
�

4�
�
�

4�
�
�

�
�
�

��
�
6
4�

�
�
�

4�
�
�

4�
�
�

4�
�

4�
�
�

��
�
�

�
�
�

&�

�
�
�

�
�
��

�
�
��

�
�
�

�
�
��

�
	�

�
��

�
�
�

�
�
��

�
�
��

�
�
��

�
�
	�

�
��

�
�

&�
User’s Manual 45

C.5 Mounting LCD/Keypad Module on the Prototyping Board

Install the LCD/keypad module on header sockets J7, J8, and J10 of the Prototyping Board
as shown in Figure C-6. Be careful to align the pins over the headers, and do not bend
them as you press down to mate the LCD/keypad module with the Prototyping Board.

Figure C-6. Install LCD/Keypad Module on Prototyping Board

���

���

���

���

��� ��� ���

���

��
�

��
�

��������

�
�
�

	
�
����
���

���

3�

��	

3��

�������
	������	���

���
�

���

���

���
�����

����

��

4�

���

���

�����

�
�
�

��
�

�
�
�

35

���"��"3��6

��� ���

�
�
�

�
�
�

���

�
�

�
�
�

3��

���

���
��	

���

���

���

���

��	

���

���

���

��	

�
�

�

���

��

���

���

���

���

���

��

���

��

���

���

���

��

���

�
	

�
�

��	

���

���

���

���

���

���

��	

�
��

���

���

���

���

���

�
�

�
�

���

���

��

��	

����
�!�
����

��

��

�����

���	

���

�
��

���

���

��	

��

���

���

�
�

�
�

���

���

���

���

�
�
�3� 3

��

�
�

��

�

��

�!�	

3��

���			"����������

�4���

	�����
���			

����������

����

����

�
�
�2

�!��

�
�
�

��� �!�

�
�

��

�2

��

��

���

3�

���

������

���

������

�����

�
��

�
��

�
�
�

���

���

�
�	

�
��

��

��

������

��� ���

�

�5

32 �!�

���
����

���

����

���2

���5
����

�!�

���

�

��
���

�!�

��5

�!�

��� ���

��
�

�
�
�

�
�

�
�
�

�
�
	

�
�
�

�
�
�

�
�
�

��
�

�
�
�

�
��

�
��

�
�
�

�
�
	

�
�
�

�
�

�
�
�

�
�
�

�
��

��
�

���������
���

���			"������7����"�����

����4�7"�����

3�3�	

����4�7"�����

��

3�

��8��

�����
3��

�1�""�1�

�1�""�1�"""""""""""���

��

�
��

����

���5

���	

�!5

����

����

����

�!

3�

��	

���

���

���

���

��	

���

���

���

��	

�
�

�

���

��

���

���

���

��

���

����

���

�����

���

���

��	

��

���

���

�
�

�
�

���

���

���

����

���

���

��	

�
��

���

���

���

���

���

�
�

�
�

���

���

��

��	

���

���

��

���

��

���

���

���

��

���

�
	

�
�

��	

���

���

���

������

����
�!�
����

��

���
����

���	

����

���

����

����

�
�

�
��

�
�	

�
2

�
�

�
5

�
��

�
�

���

����

�/%%&+9

��

3��

7�

3�
�

3�
�

3�

3�
�

�
�
�

4�
6

3�

���

� �� �� ��

��

3

�
��

�
��

�
�
�
�
�
�

7
���

�2

7�

�5

:�

��

�
�5

�
�2

�
��

�
�

�
��

�
�5

�
��

�
��

��

����
2

�
�5

���

���

�
��

���
�	��

��

�
�5

���
���
���

���

�
�
�

������
������

�
�
�

��

���

�2�
���
���

��

&�

&�6 &:
46 RabbitCore RCM3000

C.6 Bezel-Mount Installation

This section describes and illustrates how to bezel-mount the LCD/keypad module
designed for remote installation. Follow these steps for bezel-mount installation.

1. Cut mounting holes in the mounting panel in accordance with the recommended dimen-
sions in Figure C-7, then use the bezel faceplate to mount the LCD/keypad module onto
the panel.

Figure C-7. Recommended Cutout Dimensions

2. Carefully “drop in” the LCD/keypad module with the bezel and gasket attached.

�
�	
	

<2
��
�=

��		
<�2�2=

��2�	
<���5=

	��	
<��2=

0.125 D, 4x
(3)

�4�54�

0.
13

0
(3

.3
)

User’s Manual 47

3. Fasten the unit with the four 4-40 screws and washers included with the LCD/keypad
module. If your panel is thick, use a 4-40 screw that is approximately 3/16" (5 mm)
longer than the thickness of the panel.

Figure C-8. LCD/Keypad Module Mounted in Panel (rear view)

Carefully tighten the screws until the gasket is compressed and the plastic bezel face-
plate is touching the panel.

Do not tighten each screw fully before moving on to the next screw. Apply only one or
two turns to each screw in sequence until all are tightened manually as far as they can
be so that the gasket is compressed and the plastic bezel faceplate is touching the panel.

�	6	�27��#	�

����4�7"�����

�� ��
��

�� �

��
�

�
��

3�

:�

��

��

�� � ��

�
5

�
�	

�
��

:� : :�

�
��

�� ��

:� :�

�
�

��

�
��

�2
�
��

�
�2

:� :2 ��

�
��

��3
��

���
3�

�
2

�
�

6��

"��	�
48 RabbitCore RCM3000

C.6.1 Connect the LCD/Keypad Module to Your Prototyping Board

The LCD/keypad module can be located as far as 2 ft. (60 cm) away from the RCM3000
Series Prototyping Board, and is connected via a ribbon cable as shown in Figure C-9.

Figure C-9. Connecting LCD/Keypad Module to RCM3000 Series Prototyping Board

Note the locations and connections relative to pin 1 on both the RCM3000 Series Proto-
typing Board and the LCD/keypad module.

Z-World offers 2 ft. (60 cm) extension cables. Contact your authorized Z-World distributor
or a Z-World sales representative at +1(530)757-3737 for more information.

���

���

���

���

��� ��� ���

���

��
�

��
�

��������

�
�
�

	
�
����
���

���

3�

��	

3��

�������
	������	���

���
�

���

���

���
�����

����

��

4�

���

���

�����

�
�
�

��
�

�
�
�

35

���"��"3��6

��� ���

�
�
�

�
�
�

���

�
�

�
�
�

3��

���

���
��	

���

���

���

���

��	

���

���

���

��	

�
�

�

���

��

���

���

���

���

���

��

���

��

���

���

���

��

���

�
	

�
�

��	

���

���

���

���

���

���

��	

�
��

���

���

���

���

���

�
�

�
�

���

���

��

��	

����
�!�
����

��

��

�����

���	

���

�
��

���

���

��	

��

���

���

�
�

�
�

���

���

���

���

�
�
�3� 3

��

�
�

��

�

��

�!�	

3��

���			"����������

�4���

	�����
���			

����������

����

����

�
�
�2

�!��

�
�
�

��� �!�

�
�

��

�2

��

��

���

3�

���

������

���

������

�����

�
��

�
��

�
�
�

���

���

�
�	

�
��

��

��

������

��� ���

�

�5

32 �!�

���
����

���

����

���2

���5
����

�!�

���

�

��
���

�!�

��5

�!�

��� ���

��
�

�
�
�

�
�

�
�
�

�
�
	

�
�
�

�
�
�

�
�
�

��
�

�
�
�

�
��

�
��

�
�
�

�
�
	

�
�
�

�
�

�
�
�

�
�
�

�
��

��
�

���������
���

���			"������7����"�����

����4�7"�����

3�3�	

����4�7"�����

��

3�

��8��

�����
3��

�1�""�1�

�1�""�1�"""""""""""���

��

�
��

����

���5

���	

�!5

����

����

����

�!

3�

��	

���

���

���

���

��	

���

���

���

��	

�
�

�

���

��

���

���

���

��

���

����

���

�����

���

���

��	

��

���

���

�
�

�
�

���

���

���

����

���

���

��	

�
��

���

���

���

���

���

�
�

�
�

���

���

��

��	

���

���

��

���

��

���

���

���

��

���

�
	

�
�

��	

���

���

���

������

����
�!�
����

��

���
����

���	

����

���

����

����

�
�

�
��

�
�	

�
2

�
�

�
5

�
��

�
�

���

����

�/%%&+9

��

3��

����4�7"�����

�� ��
��

�� �

��
�

�
��

3�

:�

��

��

�� � ��

�
5

�
�	

�
��

:� : :�

�
��

�� ��

:� :�

�
�

��

�
��

�2

�
��

�
�2

:� :2 ��

�
��

��3
��

���
3�

�
2

�
�

6��

3�

���

���

7�
3�

�
3�

�
3�

3�

�
�
�
�

4�
6

3�

���

� �� �� ��

��

3

�
��

�
��

�
�
�
�
�
�

7
���

�2

7�

�5

:�

��

�
�5

�
�2

�
��

�
�

�
��

�
�5

�
��

�
��

��

����
2

�
�5

���

���

�
��

���
�	��

��

�
�5

���
���
���

���

�
�
�

������
������

�
�
�

��

���

�2�
���
���

��

&�

�
-�
"�

�
-�
"�
User’s Manual 49

C.7 LCD/Keypad Module Function APIs

When mounted on the RCM3000 Series Prototyping Board, the LCD/keypad module uses
the auxiliary I/O bus on the Rabbit 3000 chip. Remember to add the line

#define PORTA_AUX_IO

to the beginning of any programs using the auxiliary I/O bus.

C.7.1 LEDs

When power is applied to the LCD/keypad module for the first time, the red LED (DS1)
will come on, indicating that power is being applied to the LCD/keypad module. The red
LED is turned off when the brdInit function executes.

One function is available to control the LEDs, and can be found in the RCM3000.LIB
library in the SAMPLES\RCM3000 directory.

LED on/off control. This function will only work when the LCD/keypad module is installed on the
RCM3000 Series Prototyping Board.

PARAMETERS

led is the LED to control.

0 = LED DS1
1 = LED DS2
2 = LED DS3
3 = LED DS4
4 = LED DS5
5 = LED DS6
6 = LED DS7

value is the value used to control whether the LED is on or off (0 or 1).

0 = off
1 = on

RETURN VALUE

None.

SEE ALSO
brdInit

void ledOut(int led, int value);
50 RabbitCore RCM3000

C.7.2 LCD Display

The functions used to control the LCD display are contained in the GRAPHIC.LIB library
located in the Dynamic C DISPLAYS\GRAPHIC library directory.

Initializes the display devices, clears the screen.

RETURN VALUE

None.

SEE ALSO
glDispOnOFF, glBacklight, glSetContrast, glPlotDot, glBlock, glPlotDot,
glPlotPolygon, glPlotCircle, glHScroll, glVScroll, glXFontInit, glPrintf,
glPutChar, glSetBrushType, glBuffLock, glBuffUnlock, glPlotLine

Sets the intensity of the backlight, if circuitry is installed.

PARAMETER

: onOff reflects the low to high values (typically 0 to 255, depending on the board design) to set the back-
light intensity (0 will turn the backlight off completely.)

RETURN VALUE

None.

SEE ALSO
glInit, glDispOnoff, glSetContrast

Sets the LCD screen on or off. Data will not be cleared from the screen.

PARAMETER

onOff turns the LCD screen on or off

1—turn the LCD screen on
0—turn the LCD screen off

RETURN VALUE

None.

SEE ALSO
glInit, glSetContrast, glBackLight

void glInit(void);

void glBackLight(int onOff);

void glDispOnOff(int onOff);
User’s Manual 51

Sets display contrast (the circuitry is not installed on the LCD/keypad module used with the RCM3000
Series Prototyping Board).

PARAMETER

level reflects low to high values (typically 0 to 255, depending on the board design) to give high to low
contrast respectively.

RETURN VALUE

None.

SEE ALSO
glInit, glBacklight, glDispOnoff

Fills the LCD display screen with a pattern.

PARAMETER

The screen will be set to all black if pattern is 0xFF, all white if pattern is 0x00, and vertical stripes
for any other pattern.

RETURN VALUE

None.

SEE ALSO
glBlock, glBlankScreen, glPlotPolygon, glPlotCircle

Blanks the LCD display screen (sets LCD display screen to white).

RETURN VALUE

None.

SEE ALSO
glFillScreen, glBlock, glPlotPolygon, glPlotCircle

void glSetContrast(unsigned level);

void glFillScreen(char pattern);

void glBlankScreen(void);
52 RabbitCore RCM3000

Draws a rectangular block in the page buffer and on the LCD if the buffer is unlocked. Any portion of the
block that is outside the LCD display area will be clipped.

PARAMETERS

x is the x coordinate of the upper left corner of the block.

y is the y coordinate of the left top corner of the block.

bmWidth is the width of the block.

bmWidth is the height of the block.

RETURN VALUE

None.

SEE ALSO
glFillScreen, glBlankScreen, glPlotPolygon, glPlotCircle

Plots the outline of a polygon in the LCD page buffer, and on the LCD if the buffer is unlocked. Any por-
tion of the polygon that is outside the LCD display area will be clipped. The function will also return,
doing nothing, if there are less than 3 vertices.

PARAMETERS

n is the number of vertices.

*pFirstCoord is a pointer to array of vertex coordinates: x1,y1, x2,y2, x3,y3,...

RETURN VALUE

None.

SEE ALSO
glPlotPolygon, glFillPolygon, glFillVPolygon

void glBlock(int x, int y, int bmWidth,
int bmHeight);

void glPlotVPolygon(int n, int *pFirstCoord);
User’s Manual 53

Plots the outline of a polygon in the LCD page buffer and on the LCD if the buffer is unlocked. Any por-
tion of the polygon that is outside the LCD display area will be clipped. The function will also return,
doing nothing, if there are less than 3 vertices.

PARAMETERS

n is the number of vertices.

y1 is the y coordinate of the first vertex.

x1 is the x coordinate of the first vertex.

y2 is the y coordinate of the second vertex.

x2 is the x coordinate of the second vertex.

... are the coordinates of additional vertices.

RETURN VALUE

None.

SEE ALSO
glPlotVPolygon, glFillPolygon, glFillVPolygon

Fills a polygon in the LCD page buffer and on the LCD screen if the buffer is unlocked. Any portion of
the polygon that is outside the LCD display area will be clipped. The function will also return, doing
nothing, if there are less than 3 vertices.

PARAMETERS

n is the number of vertices.

*pFirstCoord is a pointer to array of vertex coordinates: x1,y1, x2,y2, x3,y3,...

RETURN VALUE

None.

SEE ALSO
glFillPolygon, glPlotPolygon, glPlotVPolygon

void glPlotPolygon(int n, int y1, int x2, int y2,
...);

void glFillVPolygon(int n, int *pFirstCoord);
54 RabbitCore RCM3000

Fills a polygon in the LCD page buffer and on the LCD if the buffer is unlocked. Any portion of the poly-
gon that is outside the LCD display area will be clipped.

PARAMETERS

n is the number of vertices.

x1 is the x coordinate of the first vertex.

y1 is the y coordinate of the first vertex.

x2 is the x coordinate of the second vertex.

y2 is the y coordinate of the second vertex.

... are the coordinates of additional vertices.

RETURN VALUE

None.

SEE ALSO
glFillVPolygon, glPlotPolygon, glPlotVPolygon

Draws a circle in the LCD page buffer and on the LCD if the buffer is unlocked. Any portion of the circle
that is outside the LCD display area will be clipped.

PARAMETERS

xc is the x coordinate of the center of the circle.

yc is the y coordinate of the center of the circle.

rad is the radius of the center of the circle (in pixels).

RETURN VALUE

None.

SEE ALSO
glFillCircle, glPlotPolygon, glFillPolygon

Draws a filled circle in the LCD page buffer and on the LCD if the buffer is unlocked. Any portion of the
circle that is outside the LCD display area will be clipped.

PARAMETERS

xc is the x coordinate of the center of the circle.

yc is the y coordinate of the center of the circle.

rad is the radius of the center of the circle (in pixels).

RETURN VALUE

None.

SEE ALSO
glPlotCircle, glPlotPolygon, glFillPolygon

void glFillPolygon(int n, int x1, int y1, int x2,
int y2, ...);

void glPlotCircle(int xc, int yc, int rad);

void glFillCircle(int xc, int yc, int rad);
User’s Manual 55

Initializes the font descriptor structure, where the font is stored in xmem. Each font character’s bitmap is
column major and byte-aligned.

PARAMETERS

*pInfo is a pointer to the font descriptor to be initialized.

pixWidth is the width (in pixels) of each font item.

pixHeight is the height (in pixels) of each font item.

startChar is the value of the first printable character in the font character set.

endChar is the value of the last printable character in the font character set.

xmemBuffer is the xmem pointer to a linear array of font bitmaps.

RETURN VALUE

None.

SEE ALSO
glPrinf

Returns the xmem address of the character from the specified font set.

PARAMETERS

*pInfo is the xmem address of the bitmap font set.

letter is an ASCII character.

RETURN VALUE

xmem address of bitmap character font, column major, and byte-aligned.

SEE ALSO
glPutFont, glPrintf

void glXFontInit(fontInfo *pInfo, char pixWidth,
char pixHeight, unsigned startChar,
unsigned endChar, unsigned long xmemBuffer);

unsigned long glFontCharAddr(fontInfo *pInfo,
char letter);
56 RabbitCore RCM3000

Puts an entry from the font table to the page buffer and on the LCD if the buffer is unlocked. Each font
character’s bitmap is column major and byte-aligned. Any portion of the bitmap character that is outside
the LCD display area will be clipped.

PARAMETERS

x is the x coordinate (column) of the upper left corner of the text.

y is the y coordinate (row) of the left top corner of the text.

*pInfo is a pointer to the font descriptor.

code is the ASCII character to display.

RETURN VALUE

None.

SEE ALSO
glFontCharAddr, glPrintf

Sets the glPrintf() printing step direction. The x and y step directions are independent signed values.
The actual step increments depend on the height and width of the font being displayed, which are multi-
plied by the step values.

PARAMETERS

stepX is the glPrintf x step value

stepY is the glPrintf y step value

RETURN VALUE

None.

SEE ALSO

Use glGetPfStep() to examine the current x and y printing step direction.

Gets the current glPrintf() printing step direction. Each step direction is independent of the other,
and is treated as an 8-bit signed value. The actual step increments depends on the height and width of the
font being displayed, which are multiplied by the step values.

RETURN VALUE

The x step is returned in the MSB, and the y step is returned in the LSB of the integer result.

SEE ALSO

Use glGetPfStep() to control the x and y printing step direction.

void glPutFont(int x, int y, fontInfo *pInfo,
char code);

void glSetPfStep(int stepX, int stepY);

int glGetPfStep(void);
User’s Manual 57

Provides an interface between the STDIO string-handling functions and the graphic library. The

STDIO string-formatting function will call this function, one character at a time, until the entire format-
ted string has been parsed. Any portion of the bitmap character that is outside the LCD display area will
be clipped.

PARAMETERS

ch is the character to be displayed on the LCD.

*ptr is not used, but is a place holder for STDIO string functions.

*cnt is not used, is a place holder for STDIO string functions.

*pInst is a font descriptor pointer.

RETURN VALUE

None.

SEE ALSO
glPrintf, glPutFont, doprnt

Prints a formatted string (much like printf) on the LCD screen. Only the character codes that exist in
the font set are printed, all others are skipped. For example, ’\b’, ’\t’, ’\n’ and ’\r’ (ASCII backspace, tab,
new line, and carriage return, respectively) will be printed if they exist in the font set, but will not have
any effect as control characters. Any portion of the bitmap character that is outside the LCD display area
will be clipped.

PARAMETERS

x is the x coordinate (column) of the upper left corner of the text.

y is the y coordinate (row) of the upper left corner of the text.

*pInfo is a font descriptor pointer.

*fmt is a formatted string.

... are formatted string conversion parameter(s).

EXAMPLE
glprintf(0,0, &fi12x16, "Test %d\n", count);

RETURN VALUE

None.

SEE ALSO
glXFontInit

void glPutChar(char ch, char *ptr, int *cnt,
glPutCharInst *pInst)

void glPrintf(int x, int y, fontInfo *pInfo,
char *fmt, ...);
58 RabbitCore RCM3000

Increments LCD screen locking counter. Graphic calls are recorded in the LCD memory buffer and are
not transferred to the LCD if the counter is non-zero.

NOTE: glBuffLock() and glBuffUnlock() can be nested up to a level of 255, but be
sure to balance the calls. It is not a requirement to use these procedures, but a set of
glBuffLock() and glBuffUnlock() bracketing a set of related graphic calls speeds
up the rendering significantly.

RETURN VALUE

None.

SEE ALSO
glBuffUnlock, glSwap

Decrements the LCD screen locking counter. The contents of the LCD buffer are transferred to the LCD
if the counter goes to zero.

RETURN VALUE

None.

SEE ALSO
glBuffLock, glSwap

Checks the LCD screen locking counter. The contents of the LCD buffer are transferred to the LCD if the
counter is zero.

RETURN VALUE

None.

SEE ALSO

glBuffUnlock, glBuffLock, _glSwapData (located in the library specifically for the LCD
that you are using)

Sets the drawing method (or color) of pixels drawn by subsequent graphic calls.

PARAMETER

type value can be one of the following macros.

PIXBLACK draws black pixels.
PIXWHITE draws white pixels.
PIXXOR draws old pixel XOR’ed with the new pixel.

RETURN VALUE

None.

SEE ALSO
glGetBrushType

void glBuffLock(void);

void glBuffUnlock(void);

void glSwap(void);

void glSetBrushType(int type);
User’s Manual 59

Gets the current method (or color) of pixels drawn by subsequent graphic calls.

RETURN VALUE

The current brush type.

SEE ALSO
glSetBrushType

Draws a single pixel in the LCD buffer, and on the LCD if the buffer is unlocked. If the coordinates are
outside the LCD display area, the dot will not be plotted.

PARAMETERS

x is the x coordinate of the dot.

y is the y coordinate of the dot.

RETURN VALUE

None.

SEE ALSO
glPlotline, glPlotPolygon, glPlotCircle

Draws a line in the LCD buffer, and on the LCD if the buffer is unlocked. Any portion of the line that is
beyond the LCD display area will be clipped.

PARAMETERS

x0 is the x coordinate of one endpoint of the line.

y0 is the y coordinate of one endpoint of the line.

x1 is the x coordinate of the other endpoint of the line.

y1 is the y coordinate of the other endpoint of the line.

RETURN VALUE

None.

SEE ALSO
glPlotDot, glPlotPolygon, glPlotCircle

int glGetBrushType(void);

void glPlotDot(int x, int y);

void glPlotLine(int x0, int y0, int x1, int y1);
60 RabbitCore RCM3000

Scrolls byte-aligned window left one pixel, right column is filled by current pixel type (color).

PARAMETERS

left is the upper left corner of bitmap, must be evenly divisible by 8.

top is the left top corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8.

rows is the number of rows in the window.

RETURN VALUE

None.

SEE ALSO
glHScroll, glRight1

Scrolls byte-aligned window right one pixel, left column is filled by current pixel type (color).

PARAMETERS

left is the upper left corner of bitmap, must be evenly divisible by 8.

top is the left top corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8.

rows is the number of rows in the window.

RETURN VALUE

None.

SEE ALSO
glHScroll, glLeft1

Scrolls byte-aligned window up one pixel, bottom column is filled by current pixel type (color).

PARAMETERS

left is the upper left corner of bitmap, must be evenly divisible by 8.

top is the left top corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8.

rows is the number of rows in the window.

RETURN VALUE

None.

SEE ALSO
glVScroll, glDown1

void glLeft1(int left, int top, int cols, int rows);

void glRight1(int left, int top, int cols, int rows);

void glUp1(int left, int top, int cols, int rows);
User’s Manual 61

Scrolls byte-aligned window down one pixel, top column is filled by current pixel type (color).

PARAMETERS

left is the upper left corner of bitmap, must be evenly divisible by 8.

top is the left top corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8.

rows is the number of rows in the window.

RETURN VALUE

None.

SEE ALSO
glVScroll, glUp1

Scrolls right or left, within the defined window by x number of pixels. The opposite edge of the scrolled
window will be filled in with white pixels. The window must be byte-aligned.

Parameters will be verified for the following:

1. The left and cols parameters will be verified that they are evenly divisible by 8. If not, they will
be changed to a value that is a multiple of 8.

2. Parameters will be checked to verify that the scrolling area is valid. The minimum scrolling area is
a width of 8 pixels and a height of one row.

PARAMETERS

left is the upper left corner of bitmap, must be evenly divisible by 8.

top is the left top corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8.

rows is the number of rows in the window.

nPix is the number of pixels to scroll within the defined window (a negative value will produce a scroll
to the left).

RETURN VALUE

None.

SEE ALSO
glVScroll

void glDown1(int left, int top, int cols, int rows);

void glHScroll(int left, int top, int cols,
int rows, int nPix);
62 RabbitCore RCM3000

Scrolls up or down, within the defined window by x number of pixels. The opposite edge of the scrolled
window will be filled in with white pixels. The window must be byte-aligned.

Parameters will be verified for the following:

1. The left and cols parameters will be verified that they are evenly divisible by 8. If not, they will
be changed to a value that is a multiple of 8.

2. Parameters will be checked to verify that the scrolling area is valid. The minimum scrolling area is
a width of 8 pixels and a height of one row.

PARAMETERS

left is the upper left corner of bitmap, must be evenly divisible by 8.

top is the left top corner of the bitmap.

cols is the number of columns in the window, must be evenly divisible by 8.

rows is the number of rows in the window.

nPix is the number of pixels to scroll within the defined window (a negative value will produce a scroll
up).

RETURN VALUE

None.

SEE ALSO
glHScroll

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This function calls
glXPutFastmap automatically if the bitmap is byte-aligned (the left edge and the width are each
evenly divisible by 8).

Any portion of a bitmap image or character that is outside the LCD display area will be clipped.

PARAMETERS

left is the upper left corner of the bitmap.

top is the upper left corner of the bitmap.

width is the width of the bitmap.

height is the height of the bitmap.

bitmap is the address of the bitmap in xmem.

RETURN VALUE

None.

SEE ALSO
glXPutFastmap, glPrintf

void glVScroll(int left, int top, int cols,
int rows, int nPix);

void glXPutBitmap(int left, int top, int width,
int height, unsigned long bitmap);
User’s Manual 63

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This function is like
glXPutBitmap, except that it is faster. The restriction is that the bitmap must be byte-aligned.

Any portion of a bitmap image or character that is outside the LCD display area will be clipped.

PARAMETERS

left is the upper left corner of the bitmap, must be evenly divisible by 8.

top is the upper left corner of the bitmap.

width is the width of the bitmap, must be evenly divisible by 8.

height is the height of the bitmap.

bitmap is the address of the bitmap in xmem.

RETURN VALUE

None.

SEE ALSO
glXPutBitmap, glPrintf

Defines a text-only display window. This function provides a way to display characters within the text
window using only character row and column coordinates. The text window feature provides end-of-line
wrapping and clipping after the character in the last column and row is displayed.

NOTE: Execute the TextWindowFrame function before other Text... functions.

PARAMETERS

*window is a window frame descriptor pointer.

*pFont is a font descriptor pointer.

x is the x coordinate of where the text window frame is to start.

y is the y coordinate of where the text window frame is to start.

winWidth is the width of the text window frame.

winHeight is the height of the text window frame.

RETURN VALUE

 0—window frame was successfully created.
 -1—x coordinate + width has exceeded the display boundary.
-2—y coordinate + height has exceeded the display boundary.

void glXPutFastmap(int left, int top, int width,
int height, unsigned long bitmap);

int TextWindowFrame(windowFrame *window,
fontInfo *pFont, int x, int y, int winWidth,
int winHeight)
64 RabbitCore RCM3000

Sets the cursor location on the display of where to display the next character. The display location is
based on the height and width of the character to be displayed.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS

*window is a pointer to a font descriptor.

col is a character column location.

row is a character row location.

RETURN VALUE

None.

SEE ALSO
TextPutChar, TextPrintf, TextWindowFrame

Gets the current cursor location that was set by a Graphic Text... function.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS

*window is a pointer to a font descriptor.

*col is a pointer to cursor column variable.

*row is a pointer to cursor row variable.

RETURN VALUE

Lower word = Cursor Row location
Upper word = Cursor Column location

SEE ALSO
TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

Displays a character on the display where the cursor is currently pointing. If any portion of a bitmap
character is outside the LCD display area, the character will not be displayed.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS

*window is a pointer to a font descriptor.

ch is a character to be displayed on the LCD.

RETURN VALUE

None.

SEE ALSO
TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation

void TextGotoXY(windowFrame *window, int col,
int row);

void TextCursorLocation(windowFrame *window,
int *col, int *row);

void TextPutChar(struct windowFrame *window, char ch);
User’s Manual 65

Prints a formatted string (much like printf) on the LCD screen. Only printable characters in the font
set are printed, also escape sequences, ’\r’ and ’\n’ are recognized. All other escape sequences will be
skipped over; for example, ’\b’ and ’t’ will print if they exist in the font set, but will not have any effect as
control characters.

The text window feature provides end-of-line wrapping and clipping after the character in the last col-
umn and row is displayed.

NOTE: Execute the TextWindowFrame function before using this function.

PARAMETERS

*window is a pointer to a font descriptor.

*fmt is a formatted string.

... are formatted string conversion parameter(s).

EXAMPLE
TextPrintf(&TextWindow, "Test %d\n", count);

RETURN VALUE

None.

SEE ALSO
TextGotoXY, TextPutChar, TextWindowFrame, TextCursorLocation

void TextPrintf(struct windowFrame *window,
char *fmt, ...);
66 RabbitCore RCM3000

C.7.3 Keypad

The functions used to control the keypad are contained in the KEYPAD7.LIB library
located in the Dynamic C KEYPADS library directory.

Initializes keypad process

RETURN VALUE

None.

SEE ALSO
brdInit

Assigns each key with key press and release codes, and hold and repeat ticks for auto repeat and
debouncing.

PARAMETERS

cRaw is a raw key code index.

1x7 keypad matrix with raw key code index assignments (in brackets):

User Keypad Interface

cPress is a key press code

An 8-bit value is returned when a key is pressed.
0 = Unused.

See keypadDef() for default press codes.

cRelease is a key release code.

An 8-bit value is returned when a key is pressed.
0 = Unused.

cCntHold is a hold tick.

How long to hold before repeating.
0 = No Repeat.

cSpdLo is a low-speed repeat tick.

How many times to repeat.
0 = None.

cCntLo is a low-speed hold tick.

How long to hold before going to high-speed repeat.
0 = Slow Only.

void keyInit(void);

void keyConfig(char cRaw, char cPress,
char cRelease, char cCntHold, char cSpdLo,
char cCntLo, char cSpdHi);

[0] [1] [2] [3]

[4] [5] [6]
User’s Manual 67

cSpdHi is a high-speed repeat tick.

How many times to repeat after low speed repeat.
0 = None.

RETURN VALUE

None.

SEE ALSO
keyProcess, keyGet, keypadDef

Scans and processes keypad data for key assignment, debouncing, press and release, and repeat.

NOTE: This function is also able to process an 8 × 8 matrix keypad.

RETURN VALUE

None

SEE ALSO
keyConfig, keyGet, keypadDef

Get next keypress

RETURN VALUE

The next keypress, or 0 if none

SEE ALSO
keyConfig, keyProcess, keypadDef

Push keypress on top of input queue

PARAMETER

cKey

RETURN VALUE

None.

SEE ALSO
keyGet

void keyProcess(void);

char keyGet(void);

int keyUnget(char cKey);
68 RabbitCore RCM3000

Configures the physical layout of the keypad with the desired ASCII return key codes.

Keypad physical mapping 1 × 7

where
'E' represents the ENTER key
'D' represents Down Scroll
'U' represents Up Scroll
'R' represents Right Scroll
'L' represents Left Scroll

Example: Do the followingfor the above physical vs. ASCII return key codes.

keyConfig (3,’R’,0, 0, 0, 0, 0);
keyConfig (6,’E’,0, 0, 0, 0, 0);
keyConfig (2,’D’,0, 0, 0, 0, 0);
keyConfig (4,’-’,0, 0, 0, 0, 0);
keyConfig (1,’U’,0, 0, 0, 0, 0);
keyConfig (5,’+’,0, 0, 0, 0, 0);
keyConfig (0,’L’,0, 0, 0, 0, 0);

Characters are returned upon keypress with no repeat.

RETURN VALUE

None.

SEE ALSO
keyConfig, keyGet, keyProcess

Writes "1" to each row and reads the value. The position of a keypress is indicated by a zero value in a bit
position.

PARAMETER

*pcKeys is the address of the value read.

RETURN VALUE

None.

SEE ALSO
keyConfig, keyGet, keypadDef, keyProcess

void keypadDef();

0 4 1 5 2 6 3

['L'] ['U'] ['D'] ['R']

['–'] ['+'] ['E']

void keyScan(char *pcKeys);
User’s Manual 69

C.8 Sample Programs

Sample programs illustrating the use of the LCD/keypad module with the RCM3000
Series Prototyping Board are provided in the SAMPLES\RCM3000 directory.

These sample programs use the auxiliary I/O bus on the Rabbit 3000 chip, and so the
#define PORTA_AUX_IO line is already included in the sample programs.
70 RabbitCore RCM3000

APPENDIX D. POWER SUPPLY

Appendix D provides information on the current requirements
of the RCM3000, and includes some background on the chip
select circuit used in power management.

D.1 Power Supplies

The RCM3000 requires a regulated 3.3 V ± 0.15 V DC power source. The RabbitCore
design presumes that the voltage regulator is on the user board, and that the power is made
available to the RCM3000 Series board through header J2.

An RCM3000 with no loading at the outputs operating at 29.4 MHz typically draws 145 mA.
The RCM3000 will consume an additional 10 mA when the programming cable is used to
connect the programming header, J3, to a PC.

D.1.1 Battery-Backup Circuits

The RCM3000 does not have a battery, but there is provision for a customer-supplied bat-
tery to back up SRAM and keep the internal Rabbit 3000 real-time clock running.

Header J2, shown in Figure D-1, allows access to the external battery. This header makes
it possible to connect an external 3 V power supply. This allows the SRAM and the inter-
nal Rabbit 3000 real-time clock to retain data with the RCM3000 powered down.

Figure D-1. External Battery Connections
at Header J5

A lithium battery with a nominal voltage of 3 V and a minimum capacity of 165 mA·h is
recommended. A lithium battery is strongly recommended because of its nearly constant
nominal voltage over most of its life.

����

���

	

�

�5

�

���� �!�

���

�1%&+�/0
�/%%&+9&�
User’s Manual 71

The drain on the battery by the RCM3000 is typically 5 µA when no other power is sup-
plied. If a 165 mA·h battery is used, the battery can last more than 3 years:

The actual life in your application will depend on the current drawn by components not on
the RCM3000 and the storage capacity of the battery. Note that the shelf life of a lithium ion
battery is ultimately 10 years. The RCM3000 does not drain the battery while it is powered
up normally.

D.1.2 Reset Generator

The RCM3000 uses a reset generator to reset the Rabbit 3000 microprocessor when the volt-
age drops below the voltage necessary for reliable operation. The reset occurs between
2.85 V and 3.00 V, typically 2.93 V. The RCM3000 has a reset output, pin 1 on header J2.

D.2 Optional +5 V Output

The RCM3000 Series RabbitCore boards have an onboard charge pump that provides the
+5 V needed by the RealTek Ethernet chip.

There is provision to have the +5 V supply available on pin 33 of header J2, but the default
configuration for the 0 Ω surface-mounted jumpers does not bring out this option. Consult
your Z-World or Rabbit Semiconductor sales representative for more information on
quantity orders for this option. If the +5 V output option is enabled, you will be able to
draw up to 40 mA.

165 mA·h
5 µA

------------------------ 3.7 years.=
72 RabbitCore RCM3000

APPENDIX E. PROGRAMMING CABLE

Appendix E provides additional theoretical information for the Rabbit

3000™ microprocessor when using the DIAG and PROG connectors on
the programming cable. The PROG connector is used only when the
programming cable is attached to the programming connector (header
J3) while a new application is being developed. Otherwise, the DIAG
connector on the programming cable allows the programming cable to
be used as an RS-232 to CMOS level converter for serial communica-
tion, which is appropriate for monitoring or debugging a RabbitCore
system while it is running.
User’s Manual 73

The programming port, which is shown in Figure E-1, can serve as a convenient communica-
tions port for field setup or other occasional communication need (for example, as a diag-
nostic port). If the port is simply to perform a setup function, that is, write setup
information to flash memory, then the controller can be reset through the programming
port and a cold boot performed to start execution of a special program dedicated to this
functionality.

Figure E-1. Programming Port Pin Assignments

When the PROG connector is used, the /RESET line can be asserted by manipulating
DTR and the STATUS line can be read as DSR on the serial port. The target can be
restarted by pulsing reset and then, after a short delay, sending a special character string at
2400 bps. To simply restart the BIOS, the string 80h, 24h, 80h can be sent. When the
BIOS is started, it can tell whether the programming cable is connected because the
SMODE1 and SMODE0 pins are sensed as being high.

Alternatively, the DIAG connector can be used to connect the programming port. The
/RESET line and the SMODE1 and SMODE0 pins are not connected to this connector.
The programming port is then enabled as a diagnostic port by polling the port periodically
to see if communication needs to begin or to enable the port and wait for interrupts. The
pull-up resistors on RXA and CLKA prevent spurious data reception that might take place
if the pins floated.

If the clocked serial mode is used, the serial port can be driven by having two toggling
lines that can be driven and one line that can be sensed. This allows a conversation with a
device that does not have an asynchronous serial port but that has two output signal lines
and one input signal line.

The line TXA (also called PC6) is zero after reset if the cold-boot mode is not enabled. A
possible way to detect the presence of a cable on the programming port is for the cable to
connect TXA to one of the SMODE pins and then test for the connection by raising PC6
(by configuring it as a general output bit) and reading the SMODE pin after the cold-boot
mode has been disabled. The value of the SMODE pin is read from the SPCR register.

�	

� �

 �

� �

� 2

5

�����������"����"���"�����������
<�/II-%"4:
�";-�,"/+&",*$B�"-�";/+&�%*&,-,=

""��""�!�"<��=
""��""���
""�""�646�"<���=
""��""��"���"�
""��""������
""��""�!�"<��=
""��""����
""2�""������"<$C%;C%="<�=
""5�""�����	"<��=

�	�""������"<��=
K�	"J�

���

K�	"J�
�

K�	"J�
���

K�	"J�
�

K�	"J�
�

�	���������	�
����,
�&��
74 RabbitCore RCM3000

Once you establish that the programming port will never again be needed for program-
ming, it is possible to use the programming port for additional I/O lines. Table E-1 lists the
pins available for this alternate configuration.

Table E-1. RCM3000 Programming Port Pinout Configurations

Pin Pin Name Default Use Alternate Use Notes

H
ea

de
r

J3

1 RXA Serial Port A PC7—Input

2 GND

3 CLKA
PB1—Bitwise or parallel
programmable input

4 VCC

5 RESET
Connected to reset
generator U5

6 TXA Serial Port A PC6—Output

8 STATUS Output

9 SMODE0 Input
Must be low when
RCM3000 boots up

10 SMODE1 Input
Must be low when
RCM3000 boots up
User’s Manual 75

76 RabbitCore RCM3000

APPENDIX F. MOTOR CONTROL OPTION

The RCM3000/RCM3100 Prototyping Board has a header at J6 for a
motor control option. While Z-World and Rabbit Semiconductor do
not support this option at this time, this appendix provides additional
information about Parallel Port F on the Rabbit 3000 microprocessor
to enable you to use this feature on the Prototyping Board for your
needs.

F.1 Overview

The Parallel Port F connector on the Prototyping Board, J6, gives access to all 8 pins of
Parallel Port F, along with +5 V. This appendix describes the function of each pin, and the
ways they may be used for motion-control applications. It should be read in conjunction
with the Rabbit 3000 Microprocessor User’s Manual and the RCM3000 and the
RCM3000/RCM3100 Prototyping Board schematics.
User’s Manual 77

F.2 Header J6

The connector is a 2 × 5, 0.1" pitch header suitable for connecting to a IDC receptacle,
with the following pin allocations.

All Parallel Port F lines (pins 1 to 8) are pulled up internally to +3.3 V via 100 kΩ resis-
tors. When used as outputs, the port pins will sink up to 6 mA at a VOL of 0.4 V max.

(0.2 V typ), and source up to 6 mA at a VOH of 2.2 V typ. When used as inputs, all pins

are 5 V tolerant.

As the outputs from Parallel Port F are compatible with 3.3 V logic, buffers may be
needed when the external circuit drive requirements exceed the 2.2 V typ logic high and/or
the 6 mA maximum from the Rabbit 3000. The +5 V supply output is provided for supply-
ing interface logic. When used as inputs, the pins on header J6 do not require buffers
unless the input voltage will exceed the 5 V tolerance of the processor pins. Usually, a
simple resistive divider with catching diodes will suffice if higher voltage inputs are
required. If the outputs are configured for open-drain operation, they may be pulled up to
+5 V (while observing the maximum current, of course).

Table F-1. RCM3000/RCM3100 Prototyping Board Header J6 Pinout

Pin Rabbit 3000 Primary Function Alternate Function 1 Alternate Function 2

1 Parallel Port F, bit 0 General-purpose I/O port
Quadrature decoder 1 Q
input

SCLK_D

2 Parallel Port F, bit 1 General-purpose I/O port
Quadrature decoder 1 I
input

SCLK_C

3 Parallel Port F, bit 2 General-purpose I/O port
Quadrature decoder 2 Q
input

-

4 Parallel Port F, bit 3 General-purpose I/O port
Quadrature decoder 2 I
input

-

5 Parallel Port F, bit 4 General-purpose I/O port PWM[0] output
Quadrature decoder 1 Q
input

6 Parallel Port F, bit 5 General-purpose I/O port PWM[1] output
Quadrature decoder 1 I
input

7 Parallel Port F, bit 6 General-purpose I/O port PWM[2] output
Quadrature decoder 2 Q
input

8 Parallel Port F, bit 7 General-purpose I/O port PWM[3] output
Quadrature decoder 2 I
input

9 +5 V External buffer logic supply

10 0 V Common
78 RabbitCore RCM3000

F.3 Using Parallel Port F

Parallel Port F is a byte-wide port with each bit programmable for data direction and drive.
These are simple inputs and outputs controlled and reported in the Port F Data Register.
As outputs, the bits of the port are buffered, with the data written to the Port F Data Regis-
ter transferred to the output pins on a selected timing edge. The outputs of Timer A1,
Timer B1, or Timer B2 can be used for this function, with each nibble of the port having a
separate select field to control this timing. These inputs and outputs are also used for
access to other peripherals on the chip.

As outputs, Parallel Port F can carry the four Pulse Width Modulator outputs on PF4–PF 7
(J6, pins 5–8). As inputs, Parallel Port F can carry the inputs to the Quadrature Decoders
on PF0–PF3 (J6, pins 1–4). When Serial Port C or Serial Port D is used in clocked serial
mode, two pins of Port F (PF0 / J6:1 and PF1 / J6:2) are used to carry the serial clock sig-
nals. When the internal clock is selected in these serial ports, the corresponding bit of Par-
allel Port F is set as an output.

F.3.1 Parallel Port F Registers

Data Direction Register—PFDDR, address 00111111 (0x3F), write-only, default value on
reset 00000000. For each bit position, write a 1 to make the corresponding port line an
output, or 0 to produce an input.

Drive Control Register—PFDCR, address 00111110 (0x3E), Write-only, no default on
reset (port defaults to all inputs). Effective only if the corresponding port bits are set as
outputs, each bit set to 1 configures the corresponding port bit as open drain. Setting the
bit to 0 configures that output as active high or low.

Function Register—PFFR, address 00111101 (0x3D), Write-only, no default on reset.
This register sets the alternate output function assigned to each of the pins of the port.
When set to 0, the corresponding port pin functions normally as an output (if configured to
be an output in PFDDR). When set to 1, each bit sets the corresponding pin to have the
alternate output function as shown in the summary table at the end of this section.

Control Register—PFCR, address 00111100 (0x3C), Write-only, default on reset
xx00xx00. This register sets the transfer clock, which controls the timing of the outputs on
each nibble of the output ports to allow close synchronization with other events. The sum-
mary table at the end of this section shows the settings for this register. The default values
on reset transfer the output values on CLK/2.

Data Register—PFDR, address 00111000 (0x38), Read or Write, no default value on
reset. On read, the current state of the pins is reported. On write, the output buffer is writ-
ten with the value for transfer to the output port register on the next rising edge of the
transfer clock, set in the PFCR.
User’s Manual 79

Table F-2. Parallel Port F Registers

Register Name Mnemonic I/O Address R/W Reset Value

Port F Data Register PFDR 00111000 (0x38) R/W xxxxxxxx

Bits Value Description

0:7 Read Current state of pins

Write
Port buffer. Value transferred to O/P register on next
rising edge of transfer clock.

Port F Control Register PFCR 00111100 (0x3C) W only xx00xx00

Bits Value Description

0:1 00 Lower nibble transfer clock is CLK/2

01 Lower nibble transfer clock is Timer A1

10 Lower nibble transfer clock is Timer B1

11 Lower nibble transfer clock is Timer B2

2:3 xx These bits are ignored

4:5 00 Upper nibble transfer clock is CLK/2

01 Upper nibble transfer clock is Timer A1

10 Upper nibble transfer clock is Timer B1

11 Upper nibble transfer clock is Timer B2

6:7 xx These bits are ignored

Port F Function Register PFFR 00111101 (0x3D) W xxxxxxxx

Bits Value Description

0:7 0 Corresponding port bits function normally

0 1 Bit 0 carries SCLK_D

1 1 Bit 1 carries SCLK_C

2:3 x No effect

4 1 Bit 4 carries PWM[0] output

5 1 Bit 5 carries PWM[1] output

6 1 Bit 6 carries PWM[2] output

7 1 Bit 7 carries PWM[3] output

Port F Drive Control Register PFDCR 00111110 (0x3E) W xxxxxxxx

Bits Value Description

0:7 0 Corresponding port bit is active high or low

1 Corresponding port bit is open drain
80 RabbitCore RCM3000

Port F Data Direction Register PFDDR 00111111 (0x3F) W 00000000

Bits Value Description

0:7 0 Corresponding port bit is an input

1 Corresponding port bit is an output

Table F-2. Parallel Port F Registers (continued)

Register Name Mnemonic I/O Address R/W Reset Value
User’s Manual 81

F.4 PWM Outputs

The Pulse-Width Modulator consists of a 10-bit free-running counter and four width regis-
ters. Each PWM output is high for n + 1 counts out of the 1024-clock count cycle, where n
is the value held in the width register. The PWM output high time can optionally be spread
throughout the cycle to reduce ripple on the externally filtered PWM output. The PWM is
clocked by the output of Timer A9. The spreading function is implemented by dividing
each 1024-clock cycle into four quadrants of 256 clocks each. Within each quadrant, the
Pulse-Width Modulator uses the eight MSBs of each pulse-width register to select the base
width in each of the quadrants. This is the equivalent to dividing the contents of the pulse-
width register by four and using this value in each quadrant. To get the exact high time, the
Pulse-Width Modulator uses the two LSBs of the pulse-width register to modify the high
time in each quadrant according to Table F-3 below. The “n/4” term is the base count, and
is formed from the eight MSBs of the pulse-width register.

The diagram below shows a PWM output for several different width values for both
modes of operation. Operation in the spread mode reduces the filtering requirements on
the PWM output in most cases.

Figure F-1. PWM Outputs for Various Normal and Spread Modes

Table F-3. PWM Outputs

Pulse Width LSBs 1st 2nd 3rd 4th

00 n/4 + 1 n/4 n/4 n/4

01 n/4 + 1 n/4 n/4 + 1 n/4

10 n/4 + 1 n/4 + 1 n/4 + 1 n/4

11 n/4 + 1 n/4 + 1 n/4 + 1 n/4 + 1

n=255, normal

n=256, spread

n=255, spread

(256 counts)

(64 counts) (64 counts) (64 counts) (64 counts)

(65 counts) (64 counts) (64 counts) (64 counts)

n=257, spread (65 counts) (64 counts) (65 counts) (64 counts)

n=258, spread (65 counts) (65 counts) (65 counts) (64 counts)

n=259, spread (65 counts) (65 counts) (65 counts) (65 counts)

n=259, normal (260 counts)
82 RabbitCore RCM3000

F.5 PWM Registers

There are no default values on reset for any of the PWM registers.

Table F-4. PWM Registers

PWM LSBs Register Address

PWL0R 10001000 (0x88)

PWL1R 10001010 (0x8A)

PWL2R 10001100 (0x8C)

PWL3R 10001110 (0x8E)

Bit(s) Value Description

7:6 Write
The least significant two bits for the Pulse Width Modulator count are
stored

5:1 These bits are ignored.

0 0 PWM output High for single block.

1 Spread PWM output throughout the cycle

PWM MSB x Register Address

PWM0R Address = 10001001 (0x89)

PWM1R Address = 10001011 (0x8B)

PWM2R Address = 10001101 (0x8D)

PWM3R Address = 10001111 (0x8F)

Bit(s) Value Description

7:0 write

The most significant eight bits for the Pulse-Width Modulator count
are stored

With a count of n, the PWM output will be high for n +1 clocks out of
the 1024 clocks of the PWM counter.
User’s Manual 83

F.6 Quadrature Decoder

The two-channel Quadrature Decoder accepts inputs via Parallel Port F from two external
optical incremental encoder modules. Each channel of the Quadrature Decoder accepts an
in-phase (I) and a quadrature-phase (Q) signal, and provides 8-bit counters to track shaft
rotation and provide interrupts when the count goes through the zero count in either direc-
tion. The Quadrature Decoder contains digital filters on the inputs to prevent false counts
and is clocked by the output of Timer A10. Each Quadrature Decoder channel accepts
inputs from either the upper nibble or lower nibble of Parallel Port F. The I signal is input
on an odd-numbered port bit, while the Q signal is input on an even-numbered port bit.
There is also a disable selection, which is guaranteed not to generate a count increment or
decrement on either entering or exiting the disable state. The operation of the counter as a
function of the I and Q inputs is shown below.

Figure F-2. Operation of Quadrature Decoder Counter

The Quadrature Decoders are clocked by the output of Timer A10, giving a maximum
clock rate of one-half of the peripheral clock rate. The time constant of Timer A10 must be
fast enough to sample the inputs properly. Both the I and Q inputs go through a digital fil-
ter that rejects pulses shorter than two clock periods wide. In addition, the clock rate must
be high enough that transitions on the I and Q inputs are sampled in different clock cycles.
The Input Capture (see the Rabbit 3000 Microprocessor Users Manual) may be used to
measure the pulse width on the I inputs because they come from the odd-numbered port
bits. The operation of the digital filter is shown below.

		 	� 	� 	 	� 	� 	� 	� 	2 	� 	� 	� 	� 	 	� 	� 		

�"-�;C%

:"-�;C%

�$C�%&+

-���
��

Rejected

Accepted

Peri Clock

Timer A10
84 RabbitCore RCM3000

The Quadrature Decoder generates an interrupt when the counter increments from 0x00 to
0x01 or when the counter decrements from 0x00 to 0xFF. Note that the status bits in the
QDCSR are set coincident with the interrupt, and the interrupt (and status bits) are cleared
by reading the QDCSR.

Table F-5. Quadrature Decoder Registers

Register Name Mnemonic Address

Quad Decode Control/Status
Register

QDCSR 10010000 (0x90)

Bit Value Description

7

(rd-only)
0 Quadrature Decoder 2 did not increment from 0xFF.

1
Quadrature Decoder 2 incremented from 0xFF to
0x00. This bit is cleared by a read of this register.

6

(rd-only)
0 Quadrature Decoder 2 did not decrement from 0x00.

1
Quadrature Decoder 2 decremented from 0x00 to
0xFF. This bit is cleared by a read of this register

5 0 This bit always reads as zero.

4

(wr-only)
0 No effect on the Quadrature Decoder 2.

1
Reset Quadrature Decoder 2 to 0x00, without
causing an interrupt.

3

(rd-only)
0 Quadrature Decoder 1 did not increment from 0xFF.

1
Quadrature Decoder 1 incremented from 0xFF to
0x00. This bit is cleared by a read of this register.

2

(rd-only)
0 Quadrature Decoder 1 did not decrement from 0x00.

1
Quadrature Decoder 1 decremented from 0x00 to
0xFF. This bit is cleared by a read of this register.

1 0 This bit always reads as zero.

Bit Value Description

0

(wr-only)
0 No effect on the Quadrature Decoder 1.

1
Reset Quadrature Decoder 1 to 0x00, without
causing an interrupt.
User’s Manual 85

Quad Decode Control
Register

QDCR Address = 10010001 (0x91)

Bit Value Description

7:6 0x
Disable Quadrature Decoder 2 inputs. Writing a new
value to these bits will not cause Quadrature
Decoder 2 to increment or decrement.

10
Quadrature Decoder 2 inputs from Port F bits 3 and
2.

11
Quadrature Decoder 2 inputs from Port F bits 7 and
6.

5:4 xx These bits are ignored.

3:2 0x
Disable Quadrature Decoder 1 inputs. Writing a new
value to these bits will not cause Quadrature
Decoder 1 to increment or decrement.

10
Quadrature Decoder 1 inputs from Port F bits 1 and
0.

11
Quadrature Decoder 1 inputs from Port F bits 5 and
4.

1:0 0 Quadrature Decoder interrupts are disabled.

1
Quadrature Decoder interrupt use Interrupt Priority
1.

10
Quadrature Decoder interrupt use Interrupt Priority
2.

11
Quadrature Decoder interrupt use Interrupt Priority
3.

Quad Decode Count Register QDC1R Address = 10010100 (0x94)

(QDC2R) Address = 10010110 (0x96)

Bit(s) Value Description

7:0 read
The current value of the Quadrature Decoder
counter is reported.

Table F-5. Quadrature Decoder Registers (continued)

Register Name Mnemonic Address
86 RabbitCore RCM3000

NOTICE TO USERS

Z-WORLD PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE-
SUPPORT DEVICES OR SYSTEMS UNLESS A SPECIFIC WRITTEN AGREEMENT REGARDING
SUCH INTENDED USE IS ENTERED INTO BETWEEN THE CUSTOMER AND Z-WORLD PRIOR
TO USE. Life-support devices or systems are devices or systems intended for surgical implantation into the
body or to sustain life, and whose failure to perform, when properly used in accordance with instructions for
use provided in the labeling and user’s manual, can be reasonably expected to result in significant injury.

No complex software or hardware system is perfect. Bugs are always present in a system of any size. In
order to prevent danger to life or property, it is the responsibility of the system designer to incorporate
redundant protective mechanisms appropriate to the risk involved.

All Z-World products are 100 percent functionally tested. Additional testing may include visual quality con-
trol inspections or mechanical defects analyzer inspections. Specifications are based on characterization of
tested sample units rather than testing over temperature and voltage of each unit. Z-World products may
qualify components to operate within a range of parameters that is different from the manufacturer’s recom-
mended range. This strategy is believed to be more economical and effective. Additional testing or burn-in
of an individual unit is available by special arrangement.
User’s Manual 87

88 RabbitCore RCM3000

INDEX

A

additional information
Getting Started manual 3
online documentation 3

auxiliary I/O bus 11

B

battery backup
battery life 72
external battery connec-

tions 71
reset generator 72

bus loading 28

C

clock doubler 14
conformal coating 33

D

Development Kit
RCM3000 2

digital I/O 6
I/O buffer sourcing and

sinking limits 32
memory interface 11
SMODE0 11, 13
SMODE1 11, 13

dimensions
LCD/keypad module 41
LCD/keypad template 44
Prototyping Board 36
RCM3000 24

Dynamic C 17
add-on modules 22
libraries 19
telephone-based technical

support 22
upgrades and patches 22

E

Ethernet port 12
pinout 12

exclusion zone 25

F

features 1
flash memory addresses

use blocks 15

I

I/O address assignments
LCD/keypad module 45

I/O buffer sourcing and sinking
limits 32

J

jumper configurations 34
JP1 (flash memory bank

select) 15, 34
JP2 (flash memory size) 34
JP3 (flash memory size) 34
JP4 (SRAM size) 34
JP5 (auxiliary I/O data bus)

....................................... 34
jumper locations 34

K

keypad template 44
removing and inserting la-

bel 44

L

LCD/keypad module
bezel-mount installation 47
dimensions 41
header pinout 45
I/O address assignments 45

keypad template 44
mounting instructions 46
remote cable connection ... 49
removing and inserting keypad

label 44
sample programs 70
versions 41
voltage settings 43

M

manuals 3
motor control option

quadrature decoder 84
mounting instructions

LCD/keypad module 46

P

physical mounting 27
pinout

Ethernet port 12
LCD/keypad module 45
programming cable 74
Prototyping Board 38
RCM3000

alternate configurations
................................. 8, 75

RCM3000 headers 6
power supplies

+3.3 V 71
battery backup 71
optional +5 V output 72

Program Mode 18
switching modes 18

programming cable 73, 77
DIAG connector 74
pinout 74

programming port 13
alternate pinout configura-

tions 75
used as diagnostic port 74
via motherboard 13
User’s Manual 89

Prototyping Board
adding RS-232 transceiver 39
attach modules40
dimensions36
J6

pinout78
motor control option77
pinout38
power supply37
prototyping area39
specifications37

PWM outputs82
PWM registers83

Q

quadrature decoder84
quadrature decoder registers .85

R

Rabbit 3000
data and clock delays30
Parallel Port F Registers79
Parallel Port F registers80
PWM outputs82
PWM registers83
quadrature decoder registers

..85
spectrum spreader time delays

..30
Rabbit subsystems7
Run Mode18

switching modes18

S

sample programs
LCD/keypad module70

serial communication12
serial ports12

Ethernet port12
programming port13

software
auxiliary I/O bus11, 20, 50
I/O drivers20
keypad

keyConfig67
keyGet68
keyInit67
keypadDef69
keyProcess68
keyScan69
keyUnget68

LCD display
glBackLight51
glBlankScreen52
glBlock53
glBuffLock59
glBuffUnlock59
glDispOnOff51
glDown162
glFillCircle55
glFillPolygon55
glFillScreen52
glFillVPolygon54
glFontCharAddr56
glGetBrushType60
glGetPfStep57
glHScroll62
glInit51
glLeft161
glPlotCircle55
glPlotDot60
glPlotLine60
glPlotPolygon54
glPlotVPolygon53
glPrintf58
glPutChar58
glPutFont57
glRight161
glSetBrushType59
glSetContrast52
glSetPfStep57
glSwap59
glUp161
glVScroll63
glXFontInit56
glXPutBitmap63
glXPutFastmap64
TextCursorLocation65
TextGotoXY65
TextPrintf66
TextPutChar65
TextWindowFrame64

LCD/keypad module
ledOut50

LCD/keypad module LEDs
.......................................50

libraries19
PACKET.LIB20
RCM3000.LIB50
RS232.LIB20
TCP/IP20

readUserBlock15

sample programs21
PONG.C21
RCM300021
TCPIP21

serial communication drivers
.......................................20

TCP/IP drivers20
writeUserBlock15

specifications23
bus loading28
digital I/O buffer sourcing and

sinking limits32
dimensions24
electrical, mechanical, and en-

vironmental26
exclusion zone25
header footprint27
headers27
LCD/keypad module

dimensions41
electrical42
mechanical42
temperature42

physical mounting27
Prototyping Board37
Rabbit 3000 DC characteris-

tics31
Rabbit 3000 timing diagram

.......................................29
relative pin 1 locations27

spectrum spreader30
subsystems

digital inputs and outputs6
switching modes18
90 RabbitCore RCM3000

SCHEMATICS

090-0136 RCM3000 Schematic
www.zworld.com/documentation/schemat/090-0136.pdf

090-0137 RCM3000 Series Prototyping Board Schematic
www.zworld.com/documentation/schemat/090-0137.pdf

090-0156 LCD/Keypad Module Schematic
www.zworld.com/documentation/schemat/090-0156.pdf

090-0128 Programming Cable Schematic
www.zworld.com/documentation/schemat/090-0128.pdf

The schematics included with the printed manual were the latest revisions available at the
time the manual was last revised. The online versions of the manual contain links to the
latest revised schematic on the Web site. You may also use the URL information provided
above to access the latest schematics directly.
User’s Manual 91

http://www.zworld.com/documentation/schemat/090-0136.pdf
http://www.zworld.com/documentation/schemat/090-0137.pdf
http://www.zworld.com/documentation/schemat/090-0156.pdf
http://www.zworld.com/documentation/schemat/090-0128.pdf

	RabbitCore RCM3000 User's Manual
	Table of Contents
	1. Introduction
	1.1 RCM3000 Features
	1.2 Advantages of the RCM3000
	1.3 Development and Evaluation Tools
	1.4 How to Use This Manual
	1.4.1 Additional Product Information
	1.4.2 Online Documentation

	2. Hardware Reference
	2.1 RCM3000 Digital Inputs and Outputs
	2.1.1 Memory I/O Interface
	2.1.2 Other Inputs and Outputs

	2.2 Serial Communication
	2.2.1 Serial Ports
	2.2.2 Ethernet Port
	2.2.3 Programming Port

	2.3 Other Hardware
	2.3.1 Clock Doubler
	2.3.2 Spectrum Spreader

	2.4 Memory
	2.4.1 SRAM
	2.4.2 Flash EPROM
	2.4.3 Dynamic C BIOS Source Files

	3. Software Reference
	3.1 More About Dynamic C
	3.2 Programming Cable
	3.2.1 Changing from Program Mode to Run Mode
	3.2.2 Changing from Run Mode to Program Mode

	3.3 Dynamic C Libraries
	3.3.1 I/O
	3.3.2 Serial Communication Drivers
	3.3.3 TCP/IP Drivers

	3.4 Sample Programs
	3.5 Upgrading Dynamic C
	3.5.1 Upgrades

	Appendix A. RabbitCore RCM3000 Specifications
	A.1 Electrical and Mechanical Characteristics
	A.1.1 Headers
	A.1.2 Physical Mounting

	A.2 Bus Loading
	A.3 Rabbit 3000 DC Characteristics
	A.4 I/O Buffer Sourcing and Sinking Limit
	A.5 Conformal Coating
	A.6 Jumper Configurations

	Appendix B. Prototyping Board
	B.1 Mechanical Dimensions and Layout
	B.2 Power Supply
	B.3 Using the Prototyping Board
	B.3.1 Adding Other Components
	B.3.2 Measuring Current Draw
	B.3.3 Attach Modules to Prototyping Board
	B.3.4 Other Prototyping Board Modules and Options

	Appendix C. LCD/Keypad Module
	C.1 Specifications
	C.2 Jumper-Selectable Voltage Settings for All Boards
	C.3 Keypad Labeling
	C.4 Header Pinouts
	C.4.1 I/O Address Assignments

	C.5 Mounting LCD/Keypad Module on the Prototyping Board
	C.6 Bezel-Mount Installation
	C.6.1 Connect the LCD/Keypad Module to Your Prototyping Board

	C.7 LCD/Keypad Module Function APIs
	C.7.1 LEDs
	C.7.2 LCD Display
	C.7.3 Keypad

	C.8 Sample Programs

	Appendix D. Power Supply
	D.1 Power Supplies
	D.1.1 Battery-Backup Circuits
	D.1.2 Reset Generator

	D.2 Optional +5 V Output

	Appendix E. Programming Cable
	Appendix F. Motor Control Option
	F.1 Overview
	F.2 Header J6
	F.3 Using Parallel Port F
	F.3.1 Parallel Port F Registers

	F.4 PWM Outputs
	F.5 PWM Registers
	F.6 Quadrature Decoder

	Notice to Users
	Index
	Schematics

