

S1D13505 Embedded RAMDAC LCD/CRT Controller

Power Consumption

Document Number: X23A-G-006-03

Copyright © 2001 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

1 S1D13505 Power Consumption

S1D13505 power consumption is affected by many system design variables.

- Input clock frequency (CLKI): the CLKI frequency determines the LCD frame-rate, CPU performance to memory, and other functions – the higher the input clock frequency, the higher the frame-rate, performance and power consumption.
- CPU interface: the S1D13505 current consumption depends on the BUSCLK frequency, data width, number of toggling pins, and other factors the higher the BUSCLK, the higher the CPU performance and power consumption.
- V_{DD} voltage level: the voltage level affects power consumption the higher the voltage, the higher the consumption.
- Display mode: the resolution and color depth affect power consumption the higher the resolution/color depth, the higher the consumption.
- Internal CLK divide: internal registers allow the input clock to be divided before going to the internal logic blocks the higher the divide, the lower the power consumption.

There are two power save modes in the S1D13505: Software and Hardware SUSPEND. The power consumption of these modes is affected by various system design variables.

- DRAM refresh mode (CBR or self-refresh): self-refresh capable DRAM allows the S1D13505 to disable the internal memory clock thereby saving power.
- CPU bus state during SUSPEND: the state of the CPU bus signals during SUSPEND has a substantial effect on power consumption. An inactive bus (e.g. BUSCLK = low, Addr = low etc.) reduces overall system power consumption.
- CLKI state during SUSPEND: disabling the CLKI during SUSPEND has substantial power savings.

1.1 Conditions

Table 1-1: "S1D13505 Total Power Consumption" below gives an example of a specific environment and its effects on power consumption.

Test Condition $V_{DD} = 3.3V$		Gray Shades / Colors	Total Power Consumption		
			A = 15	Power Save Mode	
	ISA Bus (8MHz)		Active	Software	Hardware
1	Input Clock = 6MHz LCD Panel = 320x240 4-bit Single Monochrome	Black-and-White 4 Gray Shades 16 Gray Shades	18.6mW 20.3mW 22.8mW	4.29mW ¹	0.33μW ²
2	Input Clock = 6MHz LCD Panel = 320x240 8-bit Single Color	4 Colors 16 Colors 256 Colors	22.3mW 25.3mW 29.0mW	4.32mW ¹	0.33μW ²
3	Input Clock = 25MHz LCD Panel = 640x480 8-bit Dual Monochrome	Black-and-White 16 Gray Shades	58.5mW 71.7mW	5.71mW ¹	0.33μW ²
4	Input Clock = 25MHz LCD Panel = 640x480 16-bit Dual Color	16 Colors 256 Colors 64K Colors	93.4mW 98.1mW 101.3mW	5.74mW ¹	0.33μW ²
5	Input Clock = 33.333MHz CRT = 640x480 Color	16 Colors 256 Colors 64K Colors	221.1mW 234.0mW 237.3mW	6.34mW ¹	0.33μW ²

Table	1-1:	S1D13505	Total Power	Consumption
1 000 00		01010000	101011 101101	0011011111111111

Note

- 1. Conditions for Software SUSPEND:
 - CPU interface active (signals toggling)
 - CLKI active
 - Self-Refresh DRAM
- 2. Conditions for Hardware SUSPEND:
 - CPU interface inactive (high impedance)
 - CLKI stopped
 - Self-Refresh DRAM

2 Summary

The system design variables in Section 1, "S1D13505 Power Consumption" and in Table 1-1: "S1D13505 Total Power Consumption" show that S1D13505 power consumption depends on the specific implementation. Active Mode power consumption depends on the desired CPU performance and LCD frame-rate, whereas Power Save Mode consumption depends on the CPU Interface and Input Clock state.

In a typical design environment, the S1D13505 can be configured to be an extremely power-efficient LCD Controller with high performance and flexibility.