
Eastwood-Tidy: C Linting for Automated Code Style Assessment
in Programming Courses

Rowan Hart
Purdue University

West Lafayette, Indiana
hart111@purdue.edu

Brian Hays
Purdue University

West Lafayette, Indiana
bph412@gmail.com

Connor McMillin
Purdue University

West Lafayette, Indiana
mcmillinconnor@gmail.com

El Kindi Rezig
Massachusetts Institute of Technology

Cambridge, Massachusetts
elkindi@mit.edu

Gustavo Rodriguez-Rivera
Purdue University

West Lafayette, Indiana
grr@purdue.edu

Jeffrey A. Turkstra
Purdue University

West Lafayette, Indiana
jeff@purdue.edu

ABSTRACT
Computer Science students receive significant instruction towards
writing functioning code that correctly satisfies requirements. Auto-
graders have been shown effective at scalably running student code
and determining whether the code correctly implements a given
assignment or project. However, code functionality is only one com-
ponent of “good” code, and there are few studies on the correlation
between code style and code quality. There are even fewer studies
contributing a tool equivalent to auto-graders for code style check-
ing and grading. We put forth two contributions. First, a style guide
for the C programming language focused on readability for stu-
dent programs. Second, an automated linting tool Eastwood-Tidy
providing on-demand style violation and fix feedback for students
and automated style grading for course staff. Finally, we survey
students and find a positive response to both a code standard and
an automated tool to support the standard and make recommen-
dations for the inclusion of both in programming focused courses
based on these results.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
• Applied computing → Computer-assisted instruction.

KEYWORDS
Code style, Linting, C Language, Computer Science education, Au-
tomated assessment tools, Automated feedback

ACM Reference Format:
RowanHart, BrianHays, ConnorMcMillin, El Kindi Rezig, Gustavo Rodriguez-
Rivera, and Jeffrey A. Turkstra. 2023. Eastwood-Tidy: C Linting for Au-
tomated Code Style Assessment in Programming Courses. In Proceedings
of the 54th ACM Technical Symposium on Computer Science Education V. 1
(SIGCSE 2023), March 15–18, 2023, Toronto, ON, Canada. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3545945.3569817

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9431-4/23/03.
https://doi.org/10.1145/3545945.3569817

1 INTRODUCTION
The C programming language is the second most popular program-
ming language according to the TIOBE popularity index [25]. C
is primarily used in operating systems, embedded systems, and
performance-critical applications. Due to this and the language’s
simplicity, it is often taught in foundational or introductory pro-
gramming courses at major universities. These courses can often
be large, with enrollments approaching one thousand students.
The scale of these courses is almost always enabled by using auto-
graders [1], both custom solutions and commercial platforms such
as Vocareum [27]. As class sizes further increase—a trend that
shows no signs of slowing [29]—these auto-graders become con-
tinually more helpful, if not necessary. In addition to grading for
functionality, courses often implement style standards for code.
Eastwood-Tidy and the included code standard provides one pro-
posed and tested approach to address this additional, and often
overlooked, challenge.

Ensuring that students write code that adheres to some consis-
tent style is a critical part of teaching students to create quality code.
The computer science field is rife with stories involving “spaghetti
code” and other descriptive terms for difficult to read and compre-
hend code. Such poor quality code is often attributable to a lack of
formal education and experience as well as a lack of exposure to
code style standards. Similar to learning syntax, language features,
and algorithms, learning to write code well is critical to the devel-
opment of good programmers [30] and should be emphasized and
evaluated at a commensurate level of rigor.

Fostering students’ ability to write clean, safe code in addition
to code that meets functional requirements prepares them for pro-
fessional team-oriented programming. Industry and open source
giants such as Google [11], LLVM [19], and Gnome [6] implement
style guides for programming and expect employees or contributors
to adhere to them. It is prudent to instruct and evaluate students sim-
ilarly to prepare them to make positive, usable contributions in their
careers through readable and functioning code. Eastwood-Tidy,
and the associated coding standard, provide one approach appro-
priate for new C programmers. The tooling specifically aids in
evaluating the presented standard across large classes.

799

https://doi.org/10.1145/3545945.3569817
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3545945.3569817
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3545945.3569817&domain=pdf&date_stamp=2023-03-03


SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Rowan Hart et al.

2 RELATEDWORKS
2.1 Auto-Graders
Prior work in automated grading and course scaling is widely avail-
able, with automated systems and auto-graders filling sessions
at SIGCSE frequently in the last decade. Commercially available
grading systems such as Gradescope and Vocareum have pushed
functionality assessment toward scalability. In [14], Ihantola et. al.
created an overview of recent advancements and developments in
automatic grading of Computer Science coursework. This overview
details advancements in learning management, including automatic
testing of code functionality across languages and disciplines. How-
ever, this overview shows the distinct lack of tools specifically
targeted at analyzing code style, only mentioning style once by Ala-
Mutka [1], who describes traditional linting tools such as Lint and
advanced tools such as Checkstyle. Critically, Ala-Mutka connects
programming style to “reliability, functionality, andmaintainability”
[1]. Of auto-grading and automation papers put forth in SIGCSE in
the past half decade, only a handful ([4], [13], [28], [5], and [15])
mention coding style and only Hyperstyle [4] presents a method for
scalable style analysis, but focuses on using existing industry tools
with pre-configured defaults instead of custom style requirements
on a per-course basis.

2.2 Compiler Messages
Compiler messaging is deeply related to coding style. Compilers,
as the primary static analysis tool in use today, have become adept
at providing messages related to uninitialized variables, improper
boolean operations, etc. LLVM-based compilers such as clang [20]
have made pioneering strides toward simplifying error messages to
enable programmers to solve complex issues quickly using static
analysis [17]. The GNU Compiler Collection [9] has also begun ini-
tiatives towards improving messaging—implementing Fix-It hints
[10] that point to specific code locations and provide suggested fixes
in addition to the error, warning, or note. Some fixes these systems
provide can even be applied automatically, reducing programmer
burden significantly and streamlining debugging. Research has
been conducted into the effectiveness of improved, human-readable
compiler errors with mixed [24] to positive results [3] measured in
increased student performance by Pettit et al. and Becker, respec-
tively. Becker points out that “students often have little experience
to draw on, leaving compiler error messages as their primary guid-
ance on error correction”. This is doubly true in large courses where
office hours may be crowded, reducing the availability of personal-
ized assistance.

2.3 Style Analysis
Despite the small quantity of recent code-style-focused research,
an effort has been put into analyzing code style. Particularly with
higher-level languages [22]. Moghadam et al. put forth a system
for analyzing code style; however, in their work, they “refer not to
mechanical coding conventions (indentation, punctuation, naming
of variables, and so on), but to the effective use of programming
idioms” [23]. This concept is not entirely unrelated to conventional
style, as idiomatic programming in C, particularly, is linked to a con-
vention, especially regarding to macro and pointer use. Leite and

Blanco present a comparison of human feedback as compared to au-
tomatic feedback [16], however their automated system does not de-
liver syntactic feedback, only functionality-related feedback, while
their human feedback included syntax-related comments. They
uncovered marginal improvement in the coding style of students
who received style feedback. A more comprehensive, on-demand
method of delivering this feedback style may improve results over
manual human delivery. This is an important observation, if not
a novel one, and automation of style feedback similar to feedback
provided by humans in Leite and Blanco’s work eliminates or dra-
matically reduces the need to commit teaching resources to style
assistance. Automating this feedback also ensures students always
have up-to-date information on the current state of their code as
they work.

Outside of educational environments, programming style re-
ceives significant attention. As previously mentioned, corporations
such as Google [11] and large open source projects commonly
provide and strictly enforce style guides. Google also maintains a
tool called cpplint [12] that automatically checks code for con-
formance to their style guide. This tool is a precursor to the set of
checks Google provides for Clang-Tidy, and is, in fact very similar
to Eastwood in implementing a custom parser. Also similarly to
Eastwood and Eastwood-Tidy, cpplint does not automatically fix
code; it simply outputs errors. The motivation for this decision for
Eastwood-Tidy is covered in greater depth in the Section 4.

Yang et al. [30] provide a method for using static Abstract Syn-
tax Tree (AST) based methods for analyzing programming style
using a rule set. They focus on Java; however, the methodology is
exceedingly similar to the AST traversals Eastwood-Tidy uses to
analyze code. In addition, Yang et al. provide studies of running
their analyzer on large open source projects with striking results,
uncovering hundreds of style violations. They recommend future
work into developing analyzers for source code and instituting code
style training for developers, future work which Eastwood-Tidy
addresses. In particular, the AST of programs is leveraged to dis-
allow multiple assignments, require separating complex logical
expressions, and check indentation of multi-line expressions.

2.4 Formatters
Numerous existing tools are designed to automatically format code,
beginning from the Unix indent utility and evolving into modern
solutions such as Clang-Tidy checks that automatically fix style and
functionality violations as they check code. Clang-Format [21] is
widely used for the C language, and is even integrated into most
Integrated Development Environments such as Visual Studio Code.
Most popular languages provide an automatic formatter, with vary-
ing degrees of configurability. Some, such as the famous Black [7]
formatter for Python, provide almost no user configurability by
design. Using automated formatting instead of an error reporting
system may increase student reliance on automated formatting too
early in their curriculum. Baniassad et al. [2] studied this effect
with respect to auto-graders, with inconclusive results. Remov-
ing student access to the grader increases student engagement in
testing at the cost of stress, a tradeoff that makes less sense for
style testing than for functionality testing. Instead, guiding stu-
dents toward careful consideration and manual formatting of their
code while providing feedback when they have successfully done

800



Eastwood-Tidy: C Linting for Automated Code Style Assessment in Programming Courses SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

so requires students to pay manual attention to their style habits
without causing panic.

3 HISTORY
Eastwood-Tidy and its associated code standard (see Standard
I) is the result of several iterations of development to support
a curriculum-required C programming course. Instructors of the
course introduced this code standard and a grading policy change
to add a small (15%) weight per assignment for code style. It has two
benefits. First, students have an opportunity for every assignment
to guarantee some points simply by writing properly formatted
code following best practices. Second, a standard helps students
form good programming habits that benefit them far beyond a sin-
gle course. The first iteration of Eastwood was written in BASH
and used complex regular expressions to check a small subset of
the code standard. This script worked well on correctly formatted
code, but could not quickly diagnose issues with incorrectly format-
ted code, which comprises the majority of code requiring accurate
error reporting. This shortcoming is primarily due to the inherent
inability of regular expressions to process context, precisely the
context of a C program.

A second iteration, called Eastwood, was built using Bison and
Flex. Eastwood used an extended C99 grammar to parse code sub-
missions as code rather than text. An actual parser enabled checking
variable naming conventions, forbidden statements, a grouping of
logical expressions, and more. Enhanced error reporting allowed
students to use Eastwood on-demand while completing assign-
ments, eased conforming to the code standard, and enabled a faster
grading process. Despite the success of Eastwood, students and
teaching assistants observed several critical issues with the plat-
form. Because it was built using a Flex and Bison-based parser for
the ANSI C11 standard, the tool could not run on many external
libraries. Especially libraries employing GNU extensions to the C
language, such as GTK and Cairo, are used in projects in intro-
ductory C courses and later courses employing the C language
at the authors’ institution. In addition, the structure of Eastwood
as a parser with no attached type or preprocessor system meant
it experienced intermittent failures to resolve types and resorted
to heuristics. Rather than add the necessary functionality to the
current system, developers attempted to identify platforms with
more extensive feature sets that would meet the requirements.

After considering several options, leveraging the LLVM frame-
work became the clear path forward. Each code standard rule was
converted into a Clang-Tidy [18] check, and the previously te-
dious tasks of lexing, parsing and AST analysis were nearly en-
tirely handed off to existing LLVM functionality. The wealth of
features provided by the LLVM Project via Clang-Tidy facilitated
re-implementation by a single developer and allowed the creation
of a more flexible tool that could feasibly be modified and extended
to accomplish the goals of not only C programming courses, but
C++ and Objective-C programming courses. In addition, the LLVM
code provided interfaces to analyze a program’s AST deeply. This
feature was leveraged to combine style analysis with functionality
checks to provide a more holistic evaluation of a student’s grasp
of the language and solution to a problem. For example, neither
Eastwood nor the original BASH script could check whether a FILE

pointer is fclose’d after use, but this deep check is possible using
LLVM.

4 SYSTEM DESIGN
Eastwood-Tidy assesses a coding standard that is used in pro-
gramming courses at our university utilizing the C language—
particularly the Introductory C Programming and Systems Pro-
gramming courses. The code standard was inspired by the Google
C++ Style Guide [12] with more concrete requirements around
spacing and indentation. The code standard draws heavily from
the Linux Kernel code standard [26], for C language-specific rules,
especially for comment formatting, function size, naming, and spac-
ing. It also adds several defensive programming requirements that
should become habitual, such as NULL-ing free’d pointers.

The tool is run from the command line by issuing a simple
linter ./myfile.c command either on a University machine
(where Eastwood-Tidy is provided in the system PATH by default,
or using a downloaded binary. For each section and subsection, an
instructional assistant implemented a Clang-Tidy check that verifies
whether a student’s code meets a particular part of the standard.
If a violation is detected, Eastwood-Tidy warns of the type of
violation, the line and column location it occurs, and in many cases,
suggests a change to fix the violation. The output includes an arrow
indicating the exact source location or source range containing the
error. Listing 1 shows an example of C source with the associated
output (edited for brevity). Each of these checks is implemented
in a single C++ source file with corresponding header file and are
implemented in approximately seven thousand lines of C++ total.
The check for rule 6.A for example, that ensures each set of logical
comparisons is surrounded by parentheses, consists of a 95 line
C++ source and 45 line header. Indentation checks are the largest,
around 700 lines. Despite the complexity of LLVM and Clang-Tidy
frameworks, this is a comparatively small undertaking as compared
to creating a full C language preprocessor, parser, and static analysis
system. The software is also architected to allow other educators
to modify and extend the system to implement their standards. For
example, each check Eastwood-Tidy implements can be toggled
individually. Many parameters such as indentation amount (which
is set to 2 spaces by default) can be modified by changing definitions
when building without any additional code.

Automatic fixes are also supported. The Clang-Tidy framework
can apply fixes based on suggestions implemented in Eastwood-Tidy
for a majority of code standard violations. These automatic fixes are
disabled by default to bring the students into the code formatting
and style process. A format would be applied automatically in a
specific industry or academic software development setting.

Requiring students to fix their errors manually helps them in-
ternalize a standard while creating more straightforward code for
themselves and instructional staff to read, understand, and debug.
However, any educator wishing to adopt Eastwood-Tidy could
enable automated fixes, allowing their students to apply fixes and
conform to the course coding standard mostly automatically.

The default checks can be divided into two categories: syn-
tactic checks and usage checks. Syntactic checks involve purely
appearance-related properties of code, such as whether binary oper-
ators are surrounded by spaces, whether functions have descriptive
header comments, or line and function length. Usage checks are a

801



SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Rowan Hart et al.

1 #include "x.h"
2 #include <other.h>
3 #define H 1
4 #define T ("bad")
5 int badglobal;
6

7 int add_values (int first_value,
8 int second_value) {
9 first_value = second_value + first_value;
10 return first_value;
11 } // add values
12

13 int main() {
14 int value = add_values(1, 2);
15 if (value == 1) {
16 return 1447;
17 }
18 value++;
19 return value;
20 }

x.c:3:11: warning: 'H' initializer is non-string constant and not surrounded by

parentheses. [eastwood-Rule1cCheck]↩→
#define H 1

^
(1)

x.c:5:5: warning: Variable declaration without definition is forbidden.

[eastwood-Rule12bCheck]↩→
int badglobal;

^
x.c:5:5: warning: Global variable 'badglobal' doesn't conform to global naming scheme.

[eastwood-Rule1dCheck]↩→
int badglobal;

^~~~~~~~~~
g_badglobal

x.c:7:1: warning: Missing header comment for function add_values.

[eastwood-Rule7aCheck]↩→
int add_values (int first_value,
^
x.c:7:15: warning: No space permitted between function name and parameter list.

[eastwood-Rule3fCheck]↩→
int add_values (int first_value,

^~
x.c:11:3: warning: End of function comment is malformed. Got "// add values" Expected

"/* add_values() */". [eastwood-Rule5dCheck]↩→
} // add values
^~~~~~~~~~~~~
/* add_values() */

x.c:16:12: note: embedded constant of type 'integerLiteral'. [eastwood-Rule11dCheck]
return 1447;

^

Listing 1: Example of a C program and a partial snippet of output generated by Eastwood-Tidy

level deeper, determining factors such as whether all variables are
initialized when declared, checking all null values are appropriately
typed, or determining whether an expression contains multiple
assignment sub-expressions. Generally, syntactic checks utilize the
concept of Matchers to locate specific nodes in the program AST
to perform checks. For example, the check ensuring all binary op-
erators have a space preceding and following the operator first
matches all binary operators, then uses the clang lexer to obtain
tokens around the operator. Usage checks also leverage Matchers
but tend not to use the clang lexer directly, preferring to utilize
structural checks and AST visitors to check assertions about the
code. E.g., every variable declaration is checked to ensure that the
declaration is also a definition to enforce the critical idea “Resource
Allocation Is Initialization.”

These default checks closely reflect the specific code standard
in use for these C programming courses; however, many are eas-
ily adaptable to a slightly different standard, and the framework
for creating these rules serves as a model for how such a tool can
be created using modern techniques, languages, and frameworks.
These checks primarily leverage the Lexer and Matcher functional-
ity of the LLVM libraries to locate instances of problem code and
report them to the student, which has become a critical design
decision. Eastwood-Tidy is used to grade students’ submissions. It
is also provided to students to self-check their code while complet-
ing programming assignments. The objective is twofold. First, to
ensure students develop good coding habits, not by returning to
their code after writing it and fixing code standard mistakes, but by
continuously writing quality code from the beginning. Second, to
provide a format encouraging clean, readable, and functional code.

By providing a tool to check most of the standard automatically,
adherence to this standard becomes less tedious and more habitual.

5 METRICS AND RESULTS
Students were asked to voluntarily complete two anonymous sur-
veys (see Table 1) to gauge student sentiment concerning the help-
fulness of the code standard and Eastwood-Tidy. These surveys
were conducted at the beginning and end of the Spring 2021 offering
of an introductory C programming course. As a first-year course,
enrollment is high at nearly 500 students. The surveys collected
students’ responses about the code standard used in the course and
Eastwood-Tidy. Specifically, the survey sought to determine stu-
dents’ takeaways about two factors. First, whether they felt using
the code standard and linting tool caused them to write better, more
readable code with fewer bugs. Second, whether they positively
reacted to the requirement to follow a coding standard and intended
to continue to follow some personal standard in the future. For tool
development reasons, the end-of-semester survey also asked about
the difference between Eastwood-Tidy and Eastwood. There were
186 responses to the survey.

As demonstrated by the results (see Table 1) of the student survey
regarding the linting tool and code standard, student opinion is
generally very positive. This indicates that despite the fact that
requiring adherence to a standard could be perceived as “busy
work” or not a direct contribution to writing code that earns a good
score for functionality, students understand the value in writing
well-structured and formatted code.

More than 80% of students reported agreement that Eastwood-Tidy
makes it easier to adhere to the existing code standard. This means
the tool accomplishes its primary goal, as the code standard has

802



Eastwood-Tidy: C Linting for Automated Code Style Assessment in Programming Courses SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

Strongly Agree Agree Neutral Disagree Strongly Disagree Question
25.9% 57.1% 11.6% 4.1% 1.4% The new linter makes it easier to meet the code standard.
33.3% 42.9% 15.6% 6.1% 2% The new linter saves time meeting the code standard.

23.1% 54.4% 15.6% 4.8% 2% The new linter effectively checks whether my code meets
the standard.

33.3% 50.3% 12.2% 2.7% 2.7% The new linter helps me accurately locate code standard
violations in my code.

19.7% 47.6% 28.6% 3.4% 0.7% The new linter helps improve the quality of my code.
8.3% 31% 32.4% 22.8% 5.5% The new linter helps me find bugs in my code.
23.1% 50.3% 17.7% 6.8% 2% The new linter helps me make my code more readable.
15.8% 48.6% 19.2% 11.6% 4.8% Following the code standard improves my code quality.

14.4% 38.4% 24% 16.6% 6.8% I will continue to use the...Code Standard in
future C programming...

21.9% 49.3% 13.7% 5.5% 9.6% I will continue to use some code standard in
future C programming...

Table 1: Results of Student Survey

always been a component of the course grade. Likewise, over 75%
of students reported that Eastwood-Tidy saves time meeting the
code standard. This data suggests Eastwood-Tidy accomplished
a secondary goal of reducing the tedium required to help their
code conform to the standard. Anecdotal evidence from observing
students during lab meetings suggest that because Eastwood-Tidy
can quickly check code, students use it continually while they work
instead of waiting until the end to fix all formatting errors. This
result is meaningful as it suggests students are integrating style
and formatting into their workflow, a habit the code standard and
linting tools were originally designed to facilitate.

The following two questions, whether Eastwood-Tidy “effec-
tively checks whether my code meets the standard” (77.5% agree-
ment) and whether Eastwood-Tidy “helps me accurately locate
code standard violations...” (83.6% agreement) sought to understand
how well Eastwood-Tidy was able to perform its checks. Once
again, the highly positive responses suggest that the tool works
accurately and correctly helping students meet the set standard.

The following three questions were the least specific but at-
tempted to discern whether Eastwood-Tidy helped students write
“better” code by asking about three distinct areas. First, students
were asked about “quality” without defining “quality”, thereby leav-
ing students to answer subjectively. 67.3% of students agreed or
strongly agreed that Eastwood-Tidy helped them write higher-
quality code. This result indicates how simple guidelines and tools
can help students improve habits and results. Unsurprisingly, less
than 40% of students agreed that Eastwood-Tidy helped them find
bugs in their code. Finding bugs is not a goal of Eastwood-Tidy,
and there are zero rules built into the tool that detects the defi-
nite presence of a programming error. That even 40% of students
agreed with this statement is interesting. One explanation is that
by writing a better formatted and well-styled code, students were
more easily able to find bugs themselves, an even more encouraging
result than anticipated. Quantitatively, it isn’t easy to ascertain, but
discussions with students suggest this is the case. Finally, nearly
75% of students felt Eastwood-Tidy helped make their code more
readable.

Students were also given questions regarding the code standard
itself instead of the Eastwood-Tidy linter. Students have reported
finding some of the points in the code standard unnecessary or
reflective of older K&R C programming guidelines. Thus, it was
unsurprising that only 52% of students agreed that they would use
the code standard from this course in future C programming. Over
70% of students agree that they will continue to use some coding
standard in the future. Any code standard assessment at scale in
programming courses can have a positive impact. Despite using the
code standard in Standard I, the authors do not necessarily prefer it
over any other well-defined and robust standard. The goal to form
a habit of following some standard is effective, according to these
data, which is an encouraging result in itself. Overall, students
appear to recognize the value of having some standard to hold
themselves to and, perhaps more importantly, intend to continue
to do so of their own volition.

The survey results suggest that Eastwood-Tidy effectivelymeets
its primary goal of helping students more easily meet the included
course code standard. Students indicate via their responses both an
understanding and appreciation for the role of code style, consis-
tency, and formatting in the software development process. Equally
important, most students intend to continue utilizing a coding stan-
dard for themselves in the future.

Several authors were UTAs in C courses prior to implementing
Eastwood-Tidy and spent upwards of 10 hours per assignment to
grade a single code standard section (e.g. Spacing) before automating
the process. This time can now be spent engaging directly with
students by holding additional office hours or extended labs.

6 CONCLUSIONS AND FUTUREWORK
The authors propose two ideas concerning assessing student code
projects in Computer Science. First, the authors recommend that
programming courses adopt a code style and best practices stan-
dard for code formatting, organization, and syntax in addition to
language-specific best practices. This recommendation is based on
previously referenced statements by Ala-Mutka [1] and Yang [30],
who present information suggesting a tangible association between
code style and overall code quality. Computer Science departments

803



SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Rowan Hart et al.

seeking to replicate the success of Eastwood-Tidy are urged to
adopt a code standard, such as the standard put forth here (see
Standard I). However, the adopted standard need not be the same so
long as it is comprehensive and well-specified. Well-specified rules
(which some existing formatting tools like Black call “opinionated”)
ease implementation of Clang-Tidy rules and manual grading.

Second, when adopting such a code style guide, automated tool-
ing such as Eastwood-Tidy should be utilized to the fullest pos-
sible extent to provide the best experience for staff and students.
Courses typically have only a few Graduate Teaching Assistants
and several Undergraduate Teaching Assistants. As put forth by
Dickson, Dragon, and Lee [8] it is feasible to delegate grading of
code standard adherence to Undergraduates, but doing so is not an
effective use of time, especially when automated grading systems
are available and possible.

The authors put forth Eastwood-Tidy, one such example of an
end-to-end solution that provides instant feedback and suggestions
to students. Such a system helps encourage good programming
habits that will stay with students as they continue their careers.
It also reduces the workload on students and course staff in the
software development and grading processes. It is worth noting that
instructional assistants are still tasked with reviewing the output of
automated tools to ensure no false positive or negative grades are
assigned. For certain sections of the standard (e.g., whether variable
names are appropriate), they are still more heavily used as well.

There is much future work in this area. Defining code standards
is a somewhat subjective matter, and implementing automated
checks for those standardized requirements will provide a contin-
uous engineering challenge. In addition, improved static analysis
techniques would allow a coding standard to check for functionality
errors that simple output-based automated test systems such as
Vocareum employed heavily by university programs may support.
In summation: code style is an exciting opportunity to reinforce
student skills that are at present primarily left by the wayside.

The full source code, code standard text, testing framework, and
documentation for Eastwood-Tidy is available at https://github.c
om/novafacing/eastwood-tidy. The code standard, edited signifi-
cantly for brevity, is also included here. We would like to thank the
many Teaching Assistants, as well as students, who helped in the
development and refinement of this software. Additional thanks
to Dr. Richard L Kennell (Purdue University) for early work in this
area and contributions to the code standard.

7 CODE STANDARD
I. Naming Convention

I.A Variable names should be in all lowercase
I.B Use descriptive and meaningful variable names
I.C Constants must be #defined, uppercase, ≥ 2 charac-

ters
I.D All global variables begin with prefix g_

II. Line and Function Length
II.A Lines over 80 characters are split up and indented
II.B Each function must be under 240 lines

III. Spacing
III.A One space must be placed between all structure and

control flow keywords (ex while) and open paren-
theses, and before all open braces

III.B One space precedes and follows all operators
III.C One space follows internal semicolons and commas
III.D #define directives must be grouped, left aligned, and

surrounded by blank lines
III.E No line should end with trailing whitespace
III.F No spaces between function name and parameter list

IV. Indentation
IV.A Place open braces on the same line as control flow

keywords. Indent compound statements 2 spaces.
IV.B Parameters should be on one line or aligned to the

first parameter if line length is exceeded
IV.C The while keyword of do-while loops should be on

a line with a closing brace
V. Comments

V.A Comments should be meaningful
V.B Place comments above code except alongside decla-

rations, else, and switch statements
V.C Comments should be preceded and followed by a

blank line and indented with surrounding code
V.D Function name should be commented after function

compound statement
V.E Function header comments should be preceded and

followed by a blank line
VI. Multiple Logical Expressions

VI.A Logical sub-expressions should be surrounded with
parentheses, except for the top-level expression

VII. Headers
VII.A A comment should be placed above each function

describing the interface and purpose of the function
VIII. Header Files

VIII.A Every .c file should have a corresponding .h file
VIII.B Header filenames should end in .h
VIII.C All header files should have include guards, with

defined symbol names ending in _H
VIII.D All project header files should use relative paths and

be descendants of the project directory
VIII.E Includes should be ordered alphabetically with the

corresponding header first, then local and global files
VIII.F All included files should be included explicitly
VIII.G Library includes must use angle braces

IX. Defensive Coding
IX.A Return values must be guarded for error conditions
IX.B FILE pointers must fclose-ed and set to NULL
IX.C Pointers deallocated with free must be set to NULL
IX.D Function parameters must be checked for errors
IX.E Appropriate zero values should be used for each type

X. Output Handling
X.A Error messages must be directed to stderr

XI. Disallowed Statements
XI.A Do not use tabs for indentation
XI.B DOS newlines should not be used
XI.C Only one assignment should be made per expression
XI.D Constant values should be defined using directives
XI.E goto should not be used

XII. Variable Declarations
XII.A Only one variable should be defined in one statement.
XII.B All variables should be initialized where defined

804

https://github.com/novafacing/eastwood-tidy
https://github.com/novafacing/eastwood-tidy


Eastwood-Tidy: C Linting for Automated Code Style Assessment in Programming Courses SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

REFERENCES
[1] Kirsti M Ala-Mutka. 2005. A Survey of Automated Assessment Ap-

proaches for Programming Assignments. Computer Science Education 15,
2 (2005), 83–102. h t tp s : / / do i . o rg /10 . 1080 /08993400500150747
arXiv:https://doi.org/10.1080/08993400500150747

[2] Elisa Baniassad, Lucas Zamprogno, Braxton Hall, and Reid Holmes. [n.d.]. STOP
THE (AUTOGRADER) INSANITY: Regression Penalties to Deter Autograder
Overreliance. In Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education (New York, NY, USA, 2021-03-05) (SIGCSE ’21). Association for
Computing Machinery, 1062–1068. https://doi.org/10.1145/3408877.3432430

[3] Brett A. Becker. 2016. An Effective Approach to Enhancing Compiler Error Mes-
sages. In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education (Memphis, Tennessee, USA) (SIGCSE ’16). Association for Computing
Machinery, New York, NY, USA, 126–131. https://doi.org/10.1145/2839509.2844
584

[4] Anastasiia Birillo, Ilya Vlasov, Artyom Burylov, Vitalii Selishchev, Artyom Gon-
charov, Elena Tikhomirova, Nikolay Vyahhi, and Timofey Bryksin. [n.d.]. Hy-
perstyle: A Tool for Assessing the Code Quality of Solutions to Programming
Assignments. In Proceedings of the 53rd ACM Technical Symposium on Computer
Science Education V. 1 (New York, NY, USA, 2022-02-22) (SIGCSE 2022). Association
for Computing Machinery, 307–313. https://doi.org/10.1145/3478431.3499294

[5] Will Crichton, Georgia Gabriela Sampaio, and Pat Hanrahan. [n.d.]. Automat-
ing Program Structure Classification. In Proceedings of the 52nd ACM Techni-
cal Symposium on Computer Science Education (New York, NY, USA, 2021-03-
05) (SIGCSE ’21). Association for Computing Machinery, 1177–1183. https:
//doi.org/10.1145/3408877.3432358

[6] Gnome Developer. 2020. C Coding Style. https://developer.gnome.org/progra
mming-guidelines/stable/c-coding-style.html.en

[7] Black Developers. 2022. The uncompromising code formatter. https://black.read
thedocs.io/en/stable/

[8] Paul E. Dickson, Toby Dragon, and Adam Lee. 2017. Using Undergraduate
Teaching Assistants in Small Classes. In Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education (Seattle, Washington, USA)
(SIGCSE ’17). Association for ComputingMachinery, New York, NY, USA, 165–170.
https://doi.org/10.1145/3017680.3017725

[9] GNU. 2022. GCC, the GNU Compiler Collection. https://gcc.gnu.org/
[10] GNU. 2022. Guidelines for Diagnostics. https://gcc.gnu.org/onlinedocs/gccint/Gu

idelines-for-Diagnostics.html
[11] Google. 2020. Google C++ Style Guide. https://google.github.io/styleguide/cppg

uide.html
[12] Google. 2021. cpplint. https://github.com/google/styleguide
[13] Wouter Groeneveld, Dries Martin, Tibo Poncelet, and Kris Aerts. [n.d.]. Are Un-

dergraduate Creative Coders Clean Coders? A Correlation Study. In Proceedings
of the 53rd ACM Technical Symposium on Computer Science Education V. 1 (New
York, NY, USA, 2022-02-22) (SIGCSE 2022). Association for Computing Machinery,
314–320. https://doi.org/10.1145/3478431.3499345

[14] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. 2010. Review
of Recent Systems for Automatic Assessment of Programming Assignments.
In Proceedings of the 10th Koli Calling International Conference on Computing

Education Research (Koli, Finland) (Koli Calling ’10). Association for Computing
Machinery, New York, NY, USA, 86–93. https://doi.org/10.1145/1930464.1930480

[15] Abe Leite and Saúl A. Blanco. [n.d.]. Effects of Human vs. Automatic Feedback on
Students’ Understanding of AI Concepts and Programming Style. In Proceedings
of the 51st ACM Technical Symposium on Computer Science Education (New York,
NY, USA, 2020-02-26) (SIGCSE ’20). Association for Computing Machinery, 44–50.
https://doi.org/10.1145/3328778.3366921

[16] Abe Leite and Saúl A. Blanco. 2020. Effects of Human vs. Automatic Feedback on
Students’ Understanding of AI Concepts and Programming Style. In Proceedings
of the 51st ACM Technical Symposium on Computer Science Education (Portland,
OR, USA) (SIGCSE ’20). Association for Computing Machinery, New York, NY,
USA, 44–50. https://doi.org/10.1145/3328778.3366921

[17] LLVM. 2020. Available Checkers. https://clang-analyzer.llvm.org/available_che
cks.html

[18] LLVM. 2020. Clang-Tidy. https://clang.llvm.org/extra/clang-tidy/
[19] LLVM. 2020. LLVM Coding Standards. https://llvm.org/docs/CodingStandards.ht

ml
[20] LLVM. 2022. Clang C Language Family Frontend for LLVM. https://clang.llvm.org/
[21] LLVM. 2022. Clang-Format. https://clang.llvm.org/docs/ClangFormat.html
[22] Logilab. 2001. PyLint. https://www.pylint.org
[23] Joseph Bahman Moghadam, Rohan Roy Choudhury, HeZheng Yin, and Armando

Fox. 2015. AutoStyle: Toward Coding Style Feedback at Scale. In Proceedings of
the Second (2015) ACM Conference on Learning @ Scale (Vancouver, BC, Canada)
(L@S ’15). Association for Computing Machinery, New York, NY, USA, 261–266.
https://doi.org/10.1145/2724660.2728672

[24] Raymond S. Pettit, John Homer, and Roger Gee. 2017. Do Enhanced Compiler
Error Messages Help Students? Results Inconclusive.. In Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education (Seattle, Wash-
ington, USA) (SIGCSE ’17). Association for Computing Machinery, New York, NY,
USA, 465–470. https://doi.org/10.1145/3017680.3017768

[25] TIOBE. 2022. TIOBE Index. https://www.tiobe.com/tiobe-index/
[26] Linus Torvalds. 2005. Linux kernel coding style. https://www.kernel.org/doc/h

tml/v4.10/process/coding-style.html
[27] Vocareum. 2022. Programming Lab. https://www.vocareum.com/home/progra

mming-lab/
[28] Eliane Wiese, Anna N. Rafferty, and Jordan Pyper. [n.d.]. Readable vs. Writable

Code: A Survey of Intermediate Students’ Structure Choices. In Proceedings of
the 53rd ACM Technical Symposium on Computer Science Education V. 1 (New
York, NY, USA, 2022-02-22) (SIGCSE 2022). Association for Computing Machinery,
321–327. https://doi.org/10.1145/3478431.3499413

[29] Chris Wilcox. 2016. Testing Strategies for the Automated Grading of Student
Programs. In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education (Memphis, Tennessee, USA) (SIGCSE ’16). Association for Com-
puting Machinery, New York, NY, USA, 437–442. https://doi.org/10.1145/283950
9.2844616

[30] Chunyu Yang, Yan Liu, and Jia Yu. 2018. Exploring Violations of Programming
Styles: Insights from Open Source Projects. In Proceedings of the 2018 2nd Inter-
national Conference on Computer Science and Artificial Intelligence (Shenzhen,
China) (CSAI ’18). Association for Computing Machinery, New York, NY, USA,
185–189. https://doi.org/10.1145/3297156.3297227

805

https://doi.org/10.1080/08993400500150747
https://arxiv.org/abs/https://doi.org/10.1080/08993400500150747
https://doi.org/10.1145/3408877.3432430
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/3478431.3499294
https://doi.org/10.1145/3408877.3432358
https://doi.org/10.1145/3408877.3432358
https://developer.gnome.org/programming-guidelines/stable/c-coding-style.html.en
https://developer.gnome.org/programming-guidelines/stable/c-coding-style.html.en
https://black.readthedocs.io/en/stable/
https://black.readthedocs.io/en/stable/
https://doi.org/10.1145/3017680.3017725
https://gcc.gnu.org/
https://gcc.gnu.org/onlinedocs/gccint/Guidelines-for-Diagnostics.html
https://gcc.gnu.org/onlinedocs/gccint/Guidelines-for-Diagnostics.html
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
https://github.com/google/styleguide
https://doi.org/10.1145/3478431.3499345
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1145/3328778.3366921
https://doi.org/10.1145/3328778.3366921
https://clang-analyzer.llvm.org/available_checks.html
https://clang-analyzer.llvm.org/available_checks.html
https://clang.llvm.org/extra/clang-tidy/
https://llvm.org/docs/CodingStandards.html
https://llvm.org/docs/CodingStandards.html
https://clang.llvm.org/
https://clang.llvm.org/docs/ClangFormat.html
https://www.pylint.org
https://doi.org/10.1145/2724660.2728672
https://doi.org/10.1145/3017680.3017768
https://www.tiobe.com/tiobe-index/
https://www.kernel.org/doc/html/v4.10/process/coding-style.html
https://www.kernel.org/doc/html/v4.10/process/coding-style.html
https://www.vocareum.com/home/programming-lab/
https://www.vocareum.com/home/programming-lab/
https://doi.org/10.1145/3478431.3499413
https://doi.org/10.1145/2839509.2844616
https://doi.org/10.1145/2839509.2844616
https://doi.org/10.1145/3297156.3297227

	Abstract
	1 Introduction
	2 Related Works
	2.1 Auto-Graders
	2.2 Compiler Messages
	2.3 Style Analysis
	2.4 Formatters

	3 History
	4 System Design
	5 Metrics and Results
	6 Conclusions and Future Work
	7 Code Standard
	References



